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Abstract

Empirical Risk Minimization (ERM) only utilizes the loss function defined for the task
and is completely agnostic about sampling distributions. Thus it only covers half of the
story. Furthermore, ERM is equivalent to Bayesian decision theory with a particular choice
of prior.

1 ERM is incomplete

Suppose we are given a data set D = {x1, ..., xN} and we want to predict future data in a way
that incurs minimum expected loss. That is, we want to pick a number θ to minimize

R =

∫

x

p(x|D)L(θ, x)dx (1)

where L is the loss in predicting θ when the real value is x and p(x|D) represents what we know
about future x after having observed D. This is the decision-theoretic method of estimation:
(1) find the predictive density p(x|D) and (2) choose the estimate which minimizes loss on that
density. The first step employs a sampling model for the data and is irrespective of the loss.
The second step employs a loss function for the task and is irrespective of the sampling model.

Empirical Risk Minimization instead chooses θ to minimize the average loss we would have
incurred on the data set D:

ER =
1

N

∑

i

L(θ, xi) (2)

which is seen as a Monte Carlo estimate of (1). The problem is that this method completely
discards any information we may have about the sampling distribution of x. The following
examples demonstrate.
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1.1 Gaussian data with squared loss

Let the loss function be quadratic and let the data be independent Gaussian with unit variance
and unknown mean:

L(θ, x) = (θ − x)2 (3)

p(x|m) ∼ N (m, 1) (4)

=
1√
2π

exp(−1

2
(x−m)2) (5)

For the Bayesian approach, we also need a prior on m in order to get a predictive density
p(x|D). Let the prior be essentially uniform, e.g. a Gaussian with very large variance. Then
the predictive density is

p(x|D) =

∫

m

p(x|m)p(m|D)dm (6)

≈
∫

m

p(x|m)N (m; x̄,
1

N
)dx (7)

= N (x̄, 1 +
1

N
) (8)

x̄ =
1

N

∑

i

xi (9)

Now, after we have computed the predictive density, we apply the loss function and minimize

R =

∫

x

p(x|D)(θ − x)2dx (10)

For any p(x|D), the minimum loss is achieved by the estimate

θ̂ =

∫

x

xp(x|D)dx = E[x|D] (11)

which in this case is x̄, the sample mean.

What about Empirical Risk Minimization? The empirical risk is

ER =
1

N

∑

i

(θ − xi)
2 (12)

whose minimum is at θ̂ = x̄. So in this case the two methods coincide.
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1.2 Gaussian data with absolute loss

Continue the previous setup but now let the loss function be

L(θ, x) = |θ − x| (13)

What does decision theory tell us to do? The predictive density p(x|D) is the same as before,
since it doesn’t depend on L. We just need to minimize

R =

∫

x

p(x|D)|θ − x|dx (14)

For any p(x|D), the minimum loss is achieved at the median of the predictive distribution, i.e.
the point where

p(x < θ̂|D) = p(x > θ̂|D) (15)

Since the predictive density is Gaussian, the median is the same as the mean, and θ̂ = x̄ as
before.

What about Empirical Risk Minimization? The empirical risk is

ER =
1

N

∑

i

|θ − xi| (16)

whose minimum is at the sample median of the data. That is, θ̂ is chosen so that the number of
samples less than θ̂ is equal to the number of samples greater than θ̂. For odd N , the median
is unique, while for even N there is an interval of equally valid minima. The main point here is
that the estimate is not the same as that prescribed by decision theory.

Which estimate is better? Decision theory says the sample mean must be optimal, and it
is hard to doubt this considering Empirical Risk is only an approximation to the Bayes risk.
Nevertheless we can confirm it with a simulation. We pick a value of m, draw N data points
with the distribution N (m, 1), compute the two estimators and measure the error on new data.
There is no need to actually sample new data since we know the expected loss will be

E[|x− θ̂|] = 2N (θ̂;m, 1) + 2(m− θ̂)φ(m− θ̂)− (m− θ̂) (17)

φ(y) =

∫ y

−∞

N (x; 0, 1)dx (18)

We repeat the whole procedure many times (but holding m fixed), and plot a histogram of the
losses. Figure 1 shows a clear win for the sample mean over the median. The average test-
data loss over 5000 trials was 0.8176 for the sample mean and 0.8267 for the sample median.
Changing the amount of training data changes the absolute loss values but doesn’t change the
overall shape of the curves.
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Figure 1: Cumulative histogram of the test-data loss for Bayesian decision theory (sample mean)
and Empirical Risk Minimization (sample median) in Example 2. For each loss value, the curves
show the percentage of trials (out of 5000) which had a test-data loss lower than that value.
Higher curves are better. The true mean was m = 5 and there were N = 20 training points.
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1.3 Laplacian data with squared loss

Instead of changing the loss function, now we change the sampling distribution. Let the loss
function be quadratic and let the data be independent Laplacian with unit variance and unknown
mean:

L(θ, x) = (θ − x)2 (19)

p(x|m) =
1

2
exp(−|x−m|) (20)

Since the loss function is the same as Example 1, Empirical Risk Minimization will again pick
the sample mean. What about decision theory? With a uniform prior on m, the predictive
distribution is

p(x|D) =

∫

m

p(x|m)p(m|D)dm (21)

p(m|D) =
exp(−∑N

i=1 |xi −m|)
∫

∞

−∞
exp(−∑N

i=1 |xi −m|)dm
(22)

Since the loss function is quadratic, the minimum loss is achieved by the estimate θ̂ = E[x|D] =
E[m|D] as before. This integral can be computed analytically as shown in Appendix A. With
more than 10 data points, it is also reasonable to approximate E[m|D] by the m which maxi-
mizes p(m|D), i.e. the maximum-likelihood estimate. In this case, maximizing the likelihood is
equivalent to minimizing

∑

i |xi−m|, which we already saw is minimized by the sample median.

So now the tables are turned: Bayesian decision theory picks the sample median while ERM
picks the sample mean. Which is better? Figure 2 shows the result of a simulation. The
test-data loss is computed analytically as

E[(x− θ̂)2] = (m− θ̂)2 + 2 (23)

Even though the sample median is only an approximation to the Bayes optimum, it still does
better than ERM. The average test-data loss over 5000 trials was 2.063 for exact Bayes, 2.066
for sample median, and 2.099 for sample mean.
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Figure 2: Cumulative histogram of the test-data loss for Bayesian decision theory (implemented
exactly vs. approximately by the sample median) and Empirical Risk Minimization (sample
mean) in Example 3. The true mean was m = 5 and there were N = 20 training points.
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2 ERM is a special case of Bayesian decision theory

Is there a choice of sampling distribution which makes the Bayes risk (1) identical to the empirical
risk (2)? Yes, all we need is for the predictive density p(x|D) to be a sum of impulses at the
training points:

p(x|D) =
1

N

N
∑

i=1

δ(x− xi) (24)

In other words, we have a maximally vague model, which assumes nothing beyond the training
data. The only things we expect are things we have seen before. Such a model can be repre-
sented mathematically by a Dirichlet process [1] with parameter zero (which Ferguson calls the
“noninformative Dirichlet prior”).

3 Maximum-likelihood

This paper has focused on the deficiencies in ERM. Maximum-likelihood is also deficient, but in
different ways. Maximum-likelihood does employ a sampling distribution, but it does not model
uncertainty in the free parameters and it does not use a loss function. Maximum-likelihood
does pretty well on the examples in this paper, matching the optimal result in the first two
examples and approximately optimal in the third example. But because of these deficiencies
one can construct counterexamples for maximum-likelihood as well.
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A Posterior mean of the Laplacian likelihood

We want to compute

E[m|D] =

∫

∞

−∞
m exp(−∑N

i=1 |xi −m|)dm
∫

∞

−∞
exp(−∑N

i=1 |xi −m|)dm
(25)

Renumber the data points so that they are sorted: x1 ≤ x2 ≤ · · · ≤ xN . By splitting the range of
integration into the separate intervals (−∞, x1), (x1, x2), · · · , (xN ,∞), we get a series of simpler
integrals. In general we get

∫

∞

−∞

f(m) exp(−
N
∑

i=1

|xi −m|)dm = exp(−
N
∑

i=1

xi)

∫ x1

−∞

f(m) exp(Nm)dm+ (26)

exp(x1 −
N
∑

i=2

xi)

∫ x2

x1

f(m) exp((N − 2)m)dm+ (27)

exp(
2

∑

i=1

xi −
N
∑

i=3

xi)

∫ x3

x2

f(m) exp((N − 4)m)dm+(28)

· · ·+ exp(
N
∑

i=1

xi)

∫

∞

xN

f(m) exp(−Nm)dm (29)

For f(m) = 1 the inner integrals are

∫ x1

−∞

exp(Nm)dm = exp(Nx1)/N (30)

∫ xi+1

xi

exp((N − 2i)m)dm =

{

exp((N−2i)xi+1)−exp((N−2i)xi)
N−2i

if N − 2i 6= 0
xi+1 − xi if N − 2i = 0

(31)

∫

∞

xN

exp(−Nm)dm = exp(−NxN)/N (32)

For f(m) = m the inner integrals are

∫ x1

−∞

m exp(Nm)dm = exp(Nx1)
Nx1 − 1

N2
(33)

∫ xi+1

xi

exp((N − 2i)m)dm =

{

exp((N−2i)xi+1)((N−2i)xi+1−1)−exp((N−2i)xi)((N−2i)xi−1)
(N−2i)2

if N − 2i 6= 0
x2
i+1

−x2
i

2
if N − 2i = 0

(34)

∫

∞

xN

exp(−Nm)dm = exp(−NxN)
NxN − 1

N2
(35)
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