

Perfect Spatial Hashing
Sylvain Lefebvre Hugues Hoppe

Microsoft Research

Sparse 2D data
𝑛=1381 pixels in 1282 image

Hash table 𝐻
𝑚=382 (=1444)

Offset table Φ
𝑟=182 Sparse 3D data

𝑛=41,127 voxels in 1283 volume
Hash table 𝐻

𝑚=353 (=42,875)
Offset table Φ

𝑟=193

Figure 1: Representation of sparse spatial data using nearly minimal perfect hashes, illustrated on coarse 2D and 3D examples.

Abstract
We explore using hashing to pack sparse data into a compact table
while retaining efficient random access. Specifically, we design a
perfect multidimensional hash function – one that is precomputed
on static data to have no hash collisions. Because our hash
function makes a single reference to a small offset table, queries
always involve exactly two memory accesses and are thus ideally
suited for parallel SIMD evaluation on graphics hardware.
Whereas prior hashing work strives for pseudorandom mappings,
we instead design the hash function to preserve spatial coherence
and thereby improve runtime locality of reference. We demon-
strate numerous graphics applications including vector images,
texture sprites, alpha channel compression, 3D-parameterized
textures, 3D painting, simulation, and collision detection.
Keywords: minimal perfect hash, multidimensional hashing, sparse data,
adaptive textures, vector images, 3D-parameterized textures.

1. Introduction
Many graphics applications involve sparsely defined spatial data.
For example, image discontinuities like sharp vector silhouettes
are generally present at only a small fraction of pixels. Texture
sprites overlay high-resolution features at sparse locations. Image
attributes like alpha masks are mainly binary, requiring additional
precision at only a small subset of pixels. Surface texture or
geometry can be represented as sparse 3D data.
Compressing such sparse data while retaining efficient random-
access is a challenging problem. Current solutions incur signifi-
cant memory overhead:
• Data quantization is lossy, and uses memory at all pixels even

though the vast majority may not have defined data.

• Block-based indirection tables typically have many unused
entries in both the indirection table and the blocks.

• Intra-block data compression (including vector quantization)
uses fixed-length encodings for fast random access.

• Quadtree/octree structures contain unused entries throughout
their hierarchies, and moreover require a costly sequence of
pointer indirections.

Hashing. We instead propose to losslessly pack sparse data into a
dense table using a hash function ℎ(𝑝) on position 𝑝. Applying
traditional hashing algorithms in the context of current graphics
architecture presents several challenges:
(1) Iterated probing: To cope with collisions, hashing algorithms
typically perform a sequence of probes into the hash table, where
the number of probes varies per query. This probing strategy is
inefficient in a GPU, because SIMD parallelism makes all pixels
wait for the worst-case number of probes. While GPUs now have
dynamic branching, it is only effective if all pixels in a region
follow the same branching path, which is unlikely for hash tests.
(2) Data coherence: Avoiding excessive hash collisions and
clustering generally requires a hash function that distributes data
seemingly at random throughout the table. Consequently, hash
tables often exhibit poor locality of reference, resulting in fre-
quent cache misses and high-latency memory accesses [Ho 1994].

Perfect hashing. To make hashing more compatible with GPU
parallelism, we explore using a perfect hash function – one that is
precomputed for a static set of elements to have no collisions.
Moreover, we seek a minimal perfect hash function – one in
which the hash table contains no unused entries.
There has been significant research on perfect hashing for more
than a decade, with both theoretical and practical contributions as
reviewed in Section 2. An important theoretical result is that
perfect hash functions are rare in the space of all possible func-
tions. In fact, the description of a minimal perfect hash function
is expected to require a number of bits proportional to the number
of data entries. Thus one cannot hope to construct a perfect hash
using an expression with a small number of machine-precision
parameters. Instead, one must resort to storing additional data
into auxiliary lookup tables.

In this paper, we define a perfect multidimensional hash function
of the form

ℎ(𝑝) = ℎ0(𝑝) + Φ[ℎ1(𝑝)] ,

which combines two imperfect hash functions ℎ0, ℎ1 with an
offset table Φ. Intuitively, the role of the offset table is to “jitter”
the imperfect hash function ℎ0 into a perfect one. Although the
offset table uses additional memory, it can fortunately be made
significantly smaller than the data itself – typically it has only 15-
25% as many entries, and each entry has just 8 bits per coordinate.
Spatial coherence. Prior work on perfect hashing has focused on
external storage of data records indexed by character strings or
sparse integers. To our knowledge, no work has considered
multidimensional data and its unique opportunities. Indeed, in
computer graphics, 2D and 3D texture data is often accessed
coherently by the parallel GPU, and is therefore swizzled, tiled,
and cached. Ideally, hashed textures should similarly be designed
to exploit access coherence.
Our solution has two parts. Whereas prior work seeks to make
intermediate hash functions like ℎ0, ℎ1 as random as possible, we
instead design them to be spatially coherent, resulting in efficient
access into the offset table Φ. Remarkably, we define ℎ0, ℎ1
simply as modulo (wraparound) addressing over the tables.
Second, we optimize the offset values in Φ to maximize coher-
ence of ℎ itself. Creating a perfect hash is already a difficult
combinatorial problem. Nonetheless, we find that there remain
enough degrees of freedom to improve coherence and thereby
increase runtime hashing performance.
Implemented on the GPU, our perfect hash allows data access
using just one additional texture access, plus only about 4-6 more
shader instructions depending on the application scenario.
Sparsity encoding. In addition to sparse data compaction, we
also describe several schemes for encoding the spatial positions of
these sparse samples. Specifically, we introduce domain bits,
position tags, and parameterized position hashes.
Filtering and blocking. For applications that require continuous
local interpolation of the sparse data, we consider two approaches.
The first is to allow native filtering in the dedicated GPU hard-
ware by grouping the data into sample-bordered blocks [Kraus
and Ertl 2002]. In this setting, our contribution is to replace the
traditional block indirection table by a compact spatial hash over
the sparsely defined blocks. The limiting factor in using blocks is
that data must be duplicated along block boundaries, thus discour-
aging small blocks sizes and leading to memory bloat.
Our second solution attains a more compact representation by
forgoing blocking and instead performing filtering explicitly as
general-purpose computation. At present this incurs an apprecia-
ble loss in performance, but can reduce memory by a factor 3 over
blocking schemes.
Examples. To provide context to the discussion, we first illus-
trate our scheme using two coarse examples in Figure 1. The
domain data values are taken from simple linear color ramps, and
the offset table vectors are visualized as colors.
In the 2D example, the 1282 image contains a set of 1,381 pixels
(8.4%) with supplemental information, e.g. vector silhouette data.
This sparse pixel data is packed into a hash table of size
382=1,444, which is much smaller than the original image. The
perfect hash function is defined using an offset table of size 182.
In the 3D example, a triangle mesh is colored by accessing a 3D
texture of size 1283. Only 41,127 voxels (2.0%) are accessed
when rendering the surface using nearest-filtering. These sparse
voxels are packed into a 3D table of size 353=42,875 using a 193
offset table.

2. Related work on hashing
Perfect hashing. We can provide here only a brief summary of
the literature. For an extensive survey, refer to [Czech et al 1997].
The probability that randomly assigning 𝑛 elements in a table of
size 𝑚 results in a perfect hash is

PrPH(𝑛,𝑚) = (1) ⋅ �1 − 1
𝑚
� ⋅ �1 − 2

𝑚
�⋯�1 − 𝑛−1

𝑚
�.

When the table is large (i.e. 𝑚 ≫ 𝑛), we can use the approxima-
tion 𝑒𝑥 ≈ 1 + 𝑥 for small 𝑥 to obtain:

PrPH(𝑛,𝑚) ≈ 1 ⋅ 𝑒−1/𝑚 ⋅ 𝑒−2/𝑚⋯𝑒−(𝑛−1)/𝑚
= 𝑒−�1+2+⋯+(𝑛−1)�/𝑚 = 𝑒−(𝑛(𝑛−1)/2𝑚) ≈ 𝑒−𝑛2/2𝑚.

Thus, the presence of a hash collision is highly likely when the
table size 𝑚 is much less than 𝑛2. This is an instance of the well-
known “birthday paradox” – a group of only 23 people have more
than 50% chance of having at least one shared birthday.
The probability of finding a minimal perfect hash (where 𝑛=𝑚) is:

PrPH(𝑛) = �𝑛
𝑛
� ⋅ �𝑛−1

𝑛
� ⋅ �𝑛−2

𝑛
�⋯�1

𝑛
�

= 𝑛!
𝑛𝑛

= 𝑒(log 𝑛!−𝑛 log 𝑛) ≈ 𝑒�(𝑛 log 𝑛−𝑛)−𝑛 log𝑛� = 𝑒−𝑛

which uses Stirling’s approximation log 𝑛! ≈ 𝑛 log 𝑛 − 𝑛. There-
fore, the expected number of bits needed to describe these rare
minimal perfect hash functions is intuitively

log2
1

PrPH(𝑛) ≈ log2 𝑒𝑛 = (log2 𝑒)𝑛 ≈ (1.443)𝑛 ,

as reported by Fox et al [1992] and based on earlier analysis by
Mehlhorn [1982].
Several number-theoretical methods construct perfect hash func-
tions by exploiting the Chinese remainder theorem [e.g. Winters
1990]. However, even for sets of a few dozen elements, these
functions involve integer coefficients with hundreds of digits.
A more computer-amenable approach is to define the hash using
one or more auxiliary tables. Fredman et al [1984] use three such
tables and two nested hash functions to hash a sparse set of n
integers taken from ℤ𝑢 = �0, … ,𝑢–1�. Their scheme takes con-
stant time and 3𝑛 log 𝑛 bits of memory. The hash is constructed
with a deterministic algorithm in 𝑂(𝑛 𝑢) time. Schmidt and
Siegel [1990] reduce space complexity to the theoretically optimal
Θ(𝑛) bits, but the constant is large and the algorithm difficult.
Some schemes [e.g. Brain and Tharp 1990] treat perfect hashing
as an instance of sparse matrix compression. They map a bound-
ed range of integers to a 2D matrix, and compact the defined
entries into a 1D array by translating the matrix rows. Sparse
matrix compression is known to be NP-complete.
The most practical schemes achieve compact representations and
scale to larger datasets by giving up guarantees of optimality.
These probabilistic constructions may iterate over several random
parameters until finding a solution. For example, Sager [1985]
defines a hash ℎ(𝑘) = ℎ0(𝑘) + 𝑔1[ℎ1(𝑘)] + 𝑔2[ℎ2(𝑘)] mod 𝑚,
where functions ℎ0, ℎ1, ℎ2 map string keys 𝑘 to ℤ𝑚,ℤ𝑟 ,ℤ𝑟 respec-
tively, and 𝑔1,𝑔2 are two tables of size 𝑟. However, this
algorithm takes expected time 𝑂(𝑟4), and is practical only up to
𝑛=512 elements.
Fox et al [1992] adapt Sager’s approach to create the first scheme
with good average-case performance (~11𝑛 bits) on large da-
tasets. Their insight is to assign values of auxiliary tables 𝑔1,𝑔2
in decreasing order of number of dependencies. They also de-
scribe a second scheme that uses quadratic hashing and adds
branching based on a table of binary values; this second scheme
achieves ~4𝑛 bits for datasets of size 𝑛~106.

Previous work considered either perfect hashing of strings, or
perfect hashing of integers in a theoretical setting. Our contribu-
tion is to extend the basic framework of [Sager 1985] to 2D and
3D spatial input domains and hash tables. We discover that
multidimensional tables allow effective hashing using a single
auxiliary table together with extremely simple functions ℎ0, ℎ1.
Whereas prior work strives to make these intermediate hashes as
random as possible [Östlin and Pagh 2003], we instead design
them to preserve coherence. We adapt the heuristic ordering
strategy of [Fox et al 1992] and extend the construction algorithm
to optimize data coherence.
Spatial hashing. Hashing is commonly used for point and region
queries in multidimensional databases [Gaede and Günther 1998].
Spatial hashing is also used in graphics for efficient collision
detection among moving or deforming objects [e.g. Mirtich 1996;
Teschner et al 2003]. However, all these techniques employ
imperfect hashing – traditional multi-probe CPU hash tables.

Domain U

p 1h
Offset table Φ

1()q h p=

0h +

[]qΦ
0()h p

Hash table H
()s h p=

() [()]D p H h p=

p US∈ ⊂

(size du u=)

(size dr r=)

(size dm m=)

S n=

Figure 2: Illustration of our hash function definition. The “hash”
functions ℎ0, ℎ1 are in fact simple modulo addressing.

3. Our perfect hashing scheme

3.1 Overview and terminology
We assume that the spatial domain 𝑈 is a 𝑑-dimensional grid with
𝑢=𝑢�𝑑 positions, denoted by ℤ𝑢�𝑑 = [0 … (𝑢�–1)]𝑑. In this paper we
present results for both 2D and 3D domains.
The sparse data consists of a subset 𝑆 ⊂ 𝑈 of 𝑛 grid positions,
where each position 𝑝 ∈ 𝑆 has an associated data record 𝐷(𝑝).
Thus the data density is the fraction 𝜌 = 𝑛/𝑢. For datasets of
codimension 1, such as curves in 2D or surfaces in 3D, we typi-
cally find that 𝜌~1/𝑢�.
Our goal is to replace the sparsely defined data 𝐷(𝑝) by a densely
packed hashed texture 𝐻[ℎ(𝑝)] where:
• the hash table 𝐻 is a 𝑑-dimensional array of size 𝑚 = 𝑚�𝑑 ≥ 𝑛

containing the data records 𝐷(𝑝), 𝑝 ∈ 𝑆;
• the perfect hash function ℎ(𝑝) ∶ 𝑈 → 𝐻 is an injective map

when restricted to 𝑆, mapping each position 𝑝 ∈ 𝑆 to a unique
slot 𝑠 = ℎ(𝑝) in the hash table.

As illustrated in Figure 2, we form this perfect hash function as

ℎ(𝑝) = ℎ0(𝑝) + Φ[ℎ1(𝑝)] mod 𝑚� , where:

• the offset table Φ is a 𝑑-dimensional array of size 𝑟 = 𝑟̅𝑑 = 𝜎 𝑛
containing 𝑑-dimensional vectors;

• the map ℎ0 ∶ 𝑝 → 𝑀0 𝑝 mod 𝑚� from domain 𝑈 onto hash table
𝐻 is a simple linear transform with a 𝑑×𝑑 matrix 𝑀0, modulo
the table size;

• the map ℎ1 ∶ 𝑝 → 𝑀1 𝑝 mod 𝑟̅ from domain 𝑈 onto the offset
table Φ is similarly defined.

As we shall see in Section 4.2, we let 𝑀0,𝑀1 be identity matrices,
so ℎ0, ℎ1 correspond simply to modulo addressing. (All modulo
operations are performed per-coordinate on vectors.)

3.2 GPU implementation
For simplicity, we describe the scheme mathematically using
arrays with integer coordinates (e.g. 0,1, … ,𝑚�–1) and integer
values. These are presently implemented as 2D/3D textures with
normalized coordinates (e.g. 0.5

𝑚���
, 1.5
𝑚���

, … , 𝑚���−0.5
𝑚���

) and normalized colors
(e.g. 0

255
, 1
255

, … , 255
255

). The necessary scales and offsets are a slight
complication, and should be obviated by integer support in up-
coming GPUs [Blythe 2006]. All modulo operations in the hash
definition are obtained for free in the texture sampler by setting
the addressing mode to wrap. Textures with arbitrary (non-
power-of-two) sizes are supported in current hardware.
We find that quantizing the offset vectors stored in Φ to 8 bits per
coordinate provides enough flexibility for hashing even when the
hash table size 𝑚� exceeds 28=256. Therefore we let Φ be a 𝑑-
channel 8-bit texture. However, to avoid bad clustering during
hash construction it is important to allow the offsets to span the
full hash table, so we scale the stored integers ℤ256𝑑 by ⌈𝑚�/255⌉.
The following is HLSL pseudocode for the hashing function:
static const int d=2; // spatial dimensions (2 or 3)
typedef vector<float,d> point;
#define tex(s,p) (d==2 ? tex2D(s,p) : tex3D(s,p))

sampler SOffset, SHData; // tables 𝜱 and 𝑯.
matrix<float,d,d> M[2]; // 𝑴𝟎,𝑴𝟏 prescaled by 𝟏/𝒎� ,𝟏/𝒓�.

point ComputeHash(point p) { // evaluates 𝒉(𝒑) → [𝟎,𝟏]𝒅
 point h0 = mul(M[0],p);
 point h1 = mul(M[1],p);
 point offset = tex(SOffset, h1) * oscale; // (*⌈𝒎� /𝟐𝟓𝟓⌉)
 return h0 + offset;
}

float4 HashedTexture(point pf) : COLOR {
 // pf is prescaled into range [𝟎,𝒖�] of space 𝑼
 point h = ComputeHash(floor(pf));
 return tex(SHData, h);
}

While the above code is already simple, several easy optimiza-
tions are possible. For 2D domains, the two matrix multiplica-
tions mul(M[i],p) are done in parallel within a float4 tuple. As we
shall see in the next section, the matrices 𝑀0,𝑀1 are in fact scaled
identity matrices, so the matrix multiplications reduce to a single
multiply instruction.
In most applications, the input coordinates are continuous and
must be discretized prior to the hash using a floor operation. We
sought to remove this floor operation by using “nearest” sampling
access to textures Φ and 𝐻, but unfortunately current hardware
seems to lack the necessary precision. Otherwise, the coordinate
scalings could also be moved to the vertex shader. For now, the
HashedTexture function above reduces to 6 instructions in 2D.

4. Hash construction
We seek to assign table sizes 𝑚� , 𝑟̅, hash coefficients 𝑀0,𝑀1, and
offset values in table Φ such that
(1) ℎ(𝑝) is a perfect hash function;
(2) Φ and 𝐻 are as compact as possible;
(3) the accesses to the tables, Φ[ℎ1(𝑝)] and 𝐻[ℎ(𝑝)], have good
coherence with respect to 𝑝.

Our strategy is to let the hash table be as compact as possible to
contain the given data, and then to construct the offset table to be
as small as possible while still allowing a perfect hash function.
More precisely, we introduce a greedy algorithm for filling the
offset table (Section 4.3), and iteratively call this algorithm with
different offset table sizes (Section 4.1). For a large enough offset
table, success is guaranteed, so our iterative process always
terminates with a perfect hash.

4.1 Selection of table sizes
For simplicity, we assume that the hash table is a square or cube.
We let its size 𝑚� be the smallest value such that 𝑚 = 𝑚�𝑑 ≥ 𝑛.
Because we quantize offset values to 8 bits, not all offset values
are representable if 𝑚� > 256, in which case we slightly increase
the table size to 𝑚 = 𝑚�𝑑 ≥ (1.01)𝑛 to give enough leeway for a
perfect hash. Consequently, the perfect hash function is not
strictly minimal, but the number 𝑚 − 𝑛 of unused entries is small.
Next, we seek to assign the offset table size 𝑟̅ to be as small as
possible while still permitting a perfect hash. We have explored
two different strategies for selecting 𝑟̅, depending on whether the
speed of hash construction is important or not.
For fast construction, we initially set the offset table size 𝑟̅ to the
smallest integer such that 𝑟 = 𝑟̅𝑑 ≥ 𝜎 𝑛 with factor 𝜎 = 1/(2𝑑).
Because the offset table contains 𝑑 channels of 8 bits each, this
size corresponds to 4 bits per data entry, and allows a perfect hash
in many cases. If the hash construction fails, we increase 𝑟̅ in a
geometric progression until construction succeeds.
For compact construction, we perform a binary search over 𝑟̅.
Because our construction is greedy and probabilistic, finding a
perfect hash for a given table size 𝑟̅ may require several attempts,
particularly if 𝑟̅ is close to optimal. We make up to 5 such at-
tempts using different random seeds. Hash construction is a
preprocess, so investing this extra time may be reasonable.
We find empirically that hash construction is less effective if 𝑟̅
has a common factor with 𝑚� or if 𝑚� mod 𝑟̅ ∈ �1, 𝑟̅–1�. Thus for
the fast construction we automatically skip these unpromising
sizes, and for the compact construction we adapt binary search to
avoid testing them unless at the lower-end of the range.

4.2 Selection of hash coefficients
Our initial approach was to fill the matrices 𝑀0,𝑀1 (defining the
intermediate hash functions ℎ0, ℎ1) with random prime coeffi-
cients, in the same spirit as prior hashing work. To improve hash
coherence we then sought to make these matrices more regular.
To our great amazement, we found that letting 𝑀0,𝑀1 just be
identity matrices does not significantly hinder the construction of
a perfect hash. The functions ℎ0, ℎ1 then simply wrap the spatial
domain multiple times over the offset and hash tables, moving
over domain points and table entries in lockstep. Thus the offset
table access Φ[ℎ1(𝑝)] is perfectly coherent. Although ℎ0(𝑝) is
also coherent, the hash table access 𝐻[ℎ(𝑝)] is generally not
because it is jittered by the offsets. However, if adjacent offset
values in Φ are the same, i.e. if the offset table is locally constant,
then ℎ itself will also be coherent. This property is considered
further in Section 4.4.
One necessary condition on ℎ0, ℎ1 is that they must map the
defined data to distinct pairs. That is, 𝑝 ∈ 𝑆 → �ℎ0(𝑝),ℎ1(𝑝)�
must be injective. Indeed, if there were two points 𝑝1, 𝑝2 ∈ 𝑆 with
ℎ0(𝑝1) = ℎ0(𝑝2) and ℎ1(𝑝1) = ℎ1(𝑝2), then these points would
always hash to the same slot ℎ(𝑝1) = ℎ(𝑝2) regardless of the
offset stored in Φ[ℎ1(𝑝)], making a perfect hash impossible.

The condition for injectivity is similar to a perfect hash of 𝑛
elements into a table of size |𝐻| × |Φ| = 𝑚 𝑟. Applying the same
formula as in Section 2, we derive a probability of success of

PrPH ≈ 𝑒−𝑛2/(2𝑚 𝑟) ≈ 𝑒−𝑛/2𝑟 ,

which seems ominously low – only 12% for 𝜎 = 𝑟/𝑛 = 0.25.
We believe that this is the main reason that previous perfect
hashing schemes resorted to additional tables and hash functions.
However, unlike prior work we do not select ℎ0, ℎ1 to be random
functions. Because our functions ℎ0, ℎ1 have periodicities 𝑚� and
𝑟̅ respectively, if these periodicities are coprime then we are
guaranteed injectivity when the domain size 𝑢� ≤ 𝑚� 𝑟̅, or equiva-
lently (since 𝑚 ≈ 𝑛) when the data density 𝜌 = 𝑛/𝑢 ≥ 1/𝑟. In
practice, 𝑟 is typically large enough that this is always true, and
thus we need not test for injectivity explicitly.

 Domain U

Offset table Φ q

Hash table H
1

1 ()h q S U− ⊂ ⊂

[]qΦ

1h

0h

Figure 3: The assignment of offset vector Φ[𝑞] corresponds to a
uniform translation of the points ℎ1−1(𝑞) within the hash table.

4.3 Creation of offset table
As shown in Figure 3, on average each entry 𝑞 of the offset table
is the image through ℎ1 of 𝜎−1 = 𝑛/𝑟 ≈ 4 data points – namely
the set ℎ1−1(𝑞) ⊂ 𝑆. The assignment of the offset vector Φ[𝑞]
determines a uniform translation of these points within the hash
table. The goal is to find an assignment that does not collide with
other points hashed in the table.
A naïve algorithm for creating a perfect hash would be to initial-
ize the offset table Φ to zero or random values, look for collisions
in ℎ(𝑝), and try to “untangle” these by perturbing the offset
values, for instance using random descent or simulated annealing.
However, this naïve approach fails because it quickly settles into
imperfect minima, from which it would take a long sequence of
offset reassignments to find a lower total number of collisions.
A key insight from [Fox et al 1992] is that the entries Φ[𝑞] with
the largest sets ℎ1−1(𝑞) of dependent data points are the most
challenging to assign, and therefore should be processed first.
Our algorithm assigns offset values greedily according to this
heuristic order (computed efficiently using a bucket sort). For
each entry 𝑞, we search for an offset value Φ[𝑞] such that the data
entries ℎ1−1(𝑞) do not collide with any data previously assigned in
the hash table, i.e.,

∀𝑝 ∈ ℎ1−1(𝑞), 𝐻�ℎ0(𝑝) + Φ[𝑞]� = undef .

The space of 8-bit-quantized offset values is ℤmin(𝑚� ,256)
𝑑 ⌈𝑚�/255⌉.

In practice it is important to start the search at a random location
in this space, or else bad clustering may result. If no valid offset
Φ[𝑞] is found, one could try backtracking, but we found results to
be satisfactory without this added complexity. Note that towards
the end of construction, the offset entries considered are those
with exactly one dependent point, i.e. |ℎ1−1(𝑞)| = 1. These are
easy cases, as the algorithm simply finds offset values that direct
these sole points to open hash slots.

4.4 Optimization of hash coherence
Because we assign 𝑀1 to be the identity matrix, accesses to the
offset table Φ are always coherent. We next describe how hash
construction is modified to increase coherence of access to 𝐻.
First, we consider the case that hash queries are constrained to the
set of defined entries 𝑆 ⊂ 𝑈. Let 𝑁𝑆(𝑝1,𝑝2) be 1 if two defined
points 𝑝1, 𝑝2 ∈ 𝑆 are spatially adjacent in the domain (i.e.
‖𝑝1 − 𝑝2‖ = 1), or 0 otherwise. And, let 𝑁𝐻(𝑠1, 𝑠2) be similarly
defined for slots in tables 𝐻. We seek to maximize

𝒩𝐻 = � 𝑁𝐻�ℎ(𝑝1), ℎ(𝑝2)�
𝑝1,𝑝2 ∣∣ 𝑁𝑆(𝑝1,𝑝2)=1

= � 𝑁𝑆(𝑝1, 𝑝2)
𝑝1,𝑝2 ∣∣ 𝑁𝐻�ℎ(𝑝1),ℎ(𝑝2)�=1

.

It is this latter expression that we measure during construction.
When assigning an offset value Φ[𝑞], rather than selecting any
value that is valid, we seek one that maximizes coherence.
Specifically, we examine the slots of 𝐻 into which the points
ℎ1−1(𝑞) map, and count how many neighbors in 𝐻 are also neigh-
bors in the spatial domain:

max
Φ[𝑞]

𝐶(Φ[𝑞]) , 𝐶(Φ[𝑞]) = �
𝑝∈ℎ1−1(𝑞), ‖Δ‖=1

 𝑁𝑆(ℎ−1(ℎ0(𝑝) + Φ[𝑞] + Δ), 𝑝).

As it is too slow to try all possible values for Φ[𝑞], we consider
the following heuristic candidates:
(1) We try setting the offset value equal to one stored in a neigh-
boring entry of the offset table, because the hash function is
coherent if the offset table is locally constant:

Φ[𝑞] ∈ �𝜙[𝑞′] ∣∣ ‖𝑞 − 𝑞′‖ < 2 �.

(2) For each point 𝑝 ∈ ℎ1−1(𝑞) associated with 𝑞, we examine its
domain-neighboring entries 𝑝′ ∈ 𝑆. If a neighbor 𝑝′ is already
assigned in the table 𝐻, we see if any neighboring slot in 𝐻 is
free, and if so, try the offset that would place 𝑝 in that free slot:

Φ[𝑞] ∈ � ℎ(𝑝′) + Δ − ℎ0(𝑝) ∣∣ 𝑝 ∈ ℎ1−1(𝑞), 𝑝′ ∈ 𝑆, 𝑁𝑆(𝑝,𝑝′) = 1 ,

 ℎ(𝑝′) ≠ undef, ‖Δ‖ = 1, 𝐻[ℎ(𝑝′) + Δ] = undef �.

In the case that hash queries can span the full domain 𝑈, then
local constancy of Φ is most important, and we give preference to
the candidates found in (1) above.
As a postprocess, any undefined offset entries (i.e. for which
ℎ1−1(𝑞) = ∅) are assigned values coherent with their neighbors.
In Table 2 we show obtained values for the normalized coherence
metric 𝒩�𝐻 = 𝒩𝐻/∑ 𝑁𝑆(𝑝1, 𝑝2)𝑝1,𝑝2 .

5. Sparsity encoding
The hash table stores data associated with a sparse subset of the
domain. Depending on the application, it may be necessary to
determine if an arbitrary query point lies in this defined subset.
Constrained access. Some scenarios such as 3D-parameterized
surface textures guarantee that only the defined subset of the
domain will ever be accessed. This is by far the simplest case, as
the hash table need not store anything except the data itself, and
no runtime test is necessary.

Domain bit. For scenarios involving unconstrained access, one
practical approach is to store a binary image over the domain,
where each pixel (bit) indicates the presence of data (or blocks of
data) in the hashed texture. One benefit is that a dynamic branch
can be performed in the shader based on the stored bit, to com-
pletely bypass the hash function evaluations (ℎ0, ℎ1) and texture
reads (Φ,𝐻) on the undefined pixels. Of course, this acceleration

is subject to the spatial granularity of GPU dynamic branching,
but is often extremely effective.
Current graphics hardware lacks support for single-bit textures, so
we pack each 4×2 block of domain bits into one pixel of an 8-bit
luminance image. To dereference the bit, we perform a lookup in
a 4×2×256 texture; next-generation hardware will have more
convenient instructions for such bit manipulations.
If a non-sparse image is already defined over the domain, an
alternate strategy is to hide the domain bit within this image, for
instance in the least-significant bit of a color or alpha channel.
Such a hidden bit is convenient to indicate the presence of sparse
supplemental data beyond that in the normal image.

Position tag. When the data is very sparse, storing even a single
bit per domain point may take significant memory. An alternative
is to let each slot of the hash table include a tag identifying the
domain position 𝑝̂ of the stored data. Given a query point, we
then simply compare it with the stored tag.
Encoding a position 𝑝̂ ∈ 𝑈 requires a minimum of log2 𝑢 bits. In
practice, we store the position tags in an image with 𝑑 channels of
16 bits, thus allowing a domain grid resolution of 𝑢�=64K. Such
position tags are more concise than a domain bit image if the data
density 𝜌 = 𝑛/𝑢 < 1/(16𝑑).

Parameterized position hash. The set ℎ−1(𝑠) ⊂ 𝑈 of domain
points mapping to a slot 𝑠 of the hash table has average size 𝑢/𝑚.
Our goal is to encode which one is the defined point 𝑝̂ ∈ 𝑆.
Viewed in this context, the position tag seems unnecessarily long
because its log2 𝑢 bits select from among all 𝑢 domain points;
ideally we would like to store just log2(𝑢/𝑚) bits. This lower
bound is likely unreachable due to lack of structure in the hash
function, but a terser encoding is possible.
We first experimented with storing a hash value from a third hash
function ℎ2(𝑝). However, if this position hash stores 𝑘 bits and
has random distribution, the expected number of false positives
over the domain is 2−𝑘𝑢, which is no better than storing position
tags. The problem is that a globally defined hash function does
not adapt to the set ℎ−1(𝑠) mapping in each slot. (It would be
interesting to constrain the hash function ℎ to avoid such false
positives, but we could not devise an efficient way to do this
during hash construction.)
Our solution is to store in each slot a tuple �𝑘,ℎ𝑘(𝑝̂)�, where the
integer 𝑘 ∈ {1, … ,𝐾} locally selects a parameterized hash
function ℎ𝑘(𝑝) such that the defined point 𝑝̂ has a hash value
ℎ𝑘(𝑝̂) ∈ {1, … ,𝑅} different from that of all other all domain
points mapping to that slot. More precisely,

 ∀𝑝 ∈ ℎ−1(𝑠) ∖ 𝑝̂, ℎ𝑘(𝑝) ≠ ℎ𝑘(𝑝̂) . (1)

The assignment of tuples �𝑘, ℎ𝑘(𝑝̂)� proceeds after hash construc-
tion as follows. We first assign 𝑘 = 1 and compute ℎ𝑘(𝑝̂) at all
slots. For the few slots without a defined point 𝑝̂, we just assign
ℎ𝑘(𝑝̂) = 1. We then sweep through the full domain 𝑈 to find the
undefined points whose parameterized hash values (under 𝑘 = 1)
conflict with ℎ𝑘(𝑝̂), and mark those slots. We then make a
second sweep through the domain to accumulate the sets ℎ−1(𝑠)
for those slots with conflicts. Finally, for each such slot, we try
all values of 𝑘 to satisfy (1).
Unlike our perfect hash function ℎ, we can let ℎ𝑘(𝑝) be as ran-
dom as possible since it is not used to dereference memory. For
fast evaluation, we use hk = frac(dot(p, rsqrt(p + k * c1))) ,
set 𝐾=𝑅=256, and store �𝑘, ℎ𝑘(𝑝̂)� as a 2-channel 8-bit image.
We show in the appendix that the probability that at all 𝑚 slots
will find a parameter 𝑘 satisfying (1) is near unity if the data
density is no smaller than 𝜌 ≈ 𝑚/𝑢 ∼ 1/800.

6. Filtering and blocking
The sparse data 𝐷(𝑝) can represent either constant attributes over
discrete grid cells (e.g. sprite pointers, line coefficients, or voxel
occupancy) or samples of a smooth underlying function (e.g. color
or transparency). In this second case we seek to evaluate a con-
tinuous reconstruction filter, as discussed next.

With blocking. Our first approach is to enable native hardware
bilinear/trilinear filtering by grouping pixels into blocks [Kraus
and Ertl 2002]. An original domain of size 𝑤 = 𝑤�𝑑 is partitioned
into a grid of 𝑢�𝑑 = (𝑤�/𝑏)𝑑 sample-bordered blocks of extent 𝑏𝑑.
Each block stores (𝑏+1)𝑑 samples since data is replicated at the
block boundaries. If 𝑛 blocks contain defined data, these pack
into a texture of size 𝑛(𝑏+1)𝑑. To reference the packed blocks,
previous schemes use an indirection table with 𝑢 pointers, for a
total of 16𝑢-24𝑢 bits. All but 𝑛 of the pointers reference a special
empty block. The block size that minimizes memory use is
determined for each given dataset through a simple search.
Our contribution is to replace the indirection table by a hash
function, which needs only ~4 bits per defined block. In addition,
for the case of 2D unconstrained access, we must encode the
defined blocks using either a domain bit or position hash, for a
total of 4𝑛+𝑢 or 20𝑛 bits respectively.
Table 1 shows quantitative comparisons of indirection tables and
domain-bit hashes for various block sizes. As can be seen from
the table, the hash offset table is much more compact than the
indirection table and therefore encourages smaller block sizes.
One limiting factor is that replication of samples along block
boundaries penalizes small blocks. Another limiting factor for the
2D case is that unconstrained access requires encoding the data
locations using domain bits (or a position hash). Nonetheless, we
see an improvement over indirection tables of 30% in 2D and
42% in 3D. For the 2D case, one practical alternative is to hide
the domain bits within the color domain image itself (Figure 7), in
which case we require only 27.7KB with block size 32, or 41%
less than the indirection table scheme.
Here is HLSL pseudocode for block-based spatial hashing:

float4 BlockedHashedTexture(point pf) {
 // pf is prescaled into range [𝟎,𝒖�]
 point fr = frac(pf);
 point p = pf - fr; // == floor(pf)
 if (use_domain_bit && !DecodeDomainBit(p))
 return undef_color;
 point h = ComputeHash(p);
 if (use_position_hash && !PositionMatchesHash(p,h))
 return undef_color;
 return tex(SHData, h + fr * bscale);
}

Without blocking. To remove the overhead of sample replica-
tion, our second approach performs explicit (non-native) filtering
on an unblocked representation. The shader retrieves the nearest
2𝑑 samples from the hashed data and blends them. Such explicit
filtering is slower by a factor ~7 in 3D on the NVIDIA 7800
GTX. (The slowdown factor is only ~3 on an ATI X1800, per-
haps because its texture caching is more effective on this type of
access pattern.) Possibly this penalty could diminish in future
architectures if filtering is relegated to general computation.
As shown in the first row of Table 1, the unblocked representation
provides only a small improvement in 2D because we still require
a position hash to encode data locations. However, in 3D where
access is constrained, memory use is reduced by an impressive
factor of 3. In fact, the unblocked hashed texture is only 16%
larger than the defined data values.

Block
size
𝑏

Blocks
Memory size (KB)

Indir.
table
total

Spatial
hash
total

Number

𝑛
Density

𝜌
Size
(KB)

offset
Φ

dom.
bit

pos.
hash

unblocked 11,868 3.7% 11.9 - 42.6 6.9 - 23.8
12 8,891 2.8% 35.6 676.3 120.1 4.4 80.1 -
22 2,930 3.7% 26.4 186.5 48.0 1.5 20.2 -
32 1,658 4.6% 26.5 98.0 36.7 1.2 9.0 -
42 1,107 5.5% 27.7 68.0 33.4 0.6 5.0 -
52 817 6.3% 29.4 55.4 33.2 0.5 3.2 -
62 655 7.3% 32.1 50.1 34.8 0.4 2.3 -
72 532 8.1% 34.0 47.2 36.1 0.3 1.7 -
82 460 9.1% 37.3 47.3 38.8 0.3 1.3 -
92 392 9.9% 39.2 47.1 40.5 0.2 1.0 -

102 339 10.4% 41.0 47.5 42.1 0.2 0.8 -

unblocked 4,500K 0.4% 13,723 - 15,698 1,976 - -
13 2,266K 0.2% 54,396 3,275,622 55,382 986 - -
23 563K 0.4% 45,596 448,249 45,869 273 - -
33 250K 0.6% 47,952 167,958 48,104 152 - -
43 140K 0.8% 52,561 102,892 52,650 89 - -
53 89K 1.0% 57,952 83,797 58,005 53 - -
63 62K 1.2% 63,873 78,874 63,910 37 - -
73 46K 1.4% 69,955 79,485 69,983 28 - -

Table 1: Comparison of memory usage for an indirection table
and a spatial hash for different block sizes, on the datasets from
Figure 7 and Figure 8. Optimal memory sizes are shown in bold.

Mipmapping. Defining a traditional mipmap pyramid over the
packed data creates filtering artifacts even in the
presence of blocking because the coarser mip-
map levels incorrectly blend data across blocks.
Our solution is as follows. We compute a
correct mipmap over the domain, and arrange all
mipmap levels into a flattened, broader domain
using a simple function, as shown inset for the
2D case. Then, we construct a spatial hash on
this new flattened domain (either with or without
blocking). At runtime, we determine the mip-
map LOD using one texture lookup [Cantlay
2005], perform separate hash queries on the two nearest mipmap
levels, and blend the retrieved colors.
Native hardware mipmap filtering would be possible by assigning
two mipmap levels to the packed texture. However, correct
filtering would require allocating (𝑏+3)𝑑 samples to each block
(where 𝑏 is odd) so it would incur a significant overhead. For
instance, blocks of size 𝑏=5 in 2D would need (5+3)2+(3+1)2=80
samples rather than (5+1)2=36 samples.

7. Applications and results
We next demonstrate several applications of perfect spatial
hashing. All results are obtained using Microsoft DirectX 9 and
an NVIDIA GeForce 7800 GTX with 256MB, in an 8002 window.

7.1 2D domains
Vector images. Several schemes embed discontinuities in an
image by storing vector information at its pixels [e.g. Sen et al
2003; Ramanarayanan et al 2004; Sen 2004; Tumblin and
Choudhury 2004; Ray et al 2005; Tarini and Cignoni 2005; Qin et
al 2006]. These schemes allocate vector data at all pixels even
though discontinuities are usually sparse. They reduce memory
through coarse quantization and somewhat intricate encodings.

Spatial hashing offers a simple, compact solution useful in con-
junction with any such scheme – whether vector data is implicit or
parametric, linear or higher-order, and with or without corners.
To demonstrate the feasibility and performance of the hash
approach, we implement a representation of binary images with
piecewise linear boundaries. For each square cell of the domain
image, we store two bits 𝑏1, 𝑏2. Bit 𝑏1 is the primary color of the
cell, and bit 𝑏2 indicates if any boundary lines pass through the
cell. If 𝑏2=1, the shader accesses a hashed texture to retrieve the
coefficients 𝑎𝑖 ,𝑏𝑖 , 𝑐𝑖 , 𝑖=1,2 of two oriented lines passing through
the cell, 𝑙𝑖(𝑥,𝑦) = 𝑎𝑖𝑥 + 𝑏𝑖𝑦 + 𝑐𝑖, where 𝑥,𝑦 are cell-local
coordinates. The binary color at (𝑥,𝑦) is simply defined as

𝑏1 xor (𝑙1(𝑥,𝑦) > 0 ∧ 𝑙2(𝑥,𝑦) > 0) .
We pack the 2 bits per pixel of the domain image as 2×2 blocks
into individual pixels of an 8-bit image, and pack the hashed set of
line coefficients as two RGB 8-bit images. For the example in
Figure 4, given a 2562 vector data image of 393KB, we create a
1282 domain image of 16 KB, a hash table of 68KB, and an offset
table of 7 KB, for a total of 91KB, or only 11 bits/pixel – quite
nice for a resolution-independent representation with such a large
number of discontinuities. Spatial hashing of a pinch function
[Tarini and Cignoni 2005] could further reduce storage.
We implement antialiasing as in [Loop and Blinn 2005]. The
complete shader, including hashing, takes 40 instructions. One
key benefit of our approach is that dynamic branching on the
domain bit 𝑏2 lets the shader run extremely quickly on pixels
away from the boundaries. For those pixels near discontinuities,
the shader makes a total of 5 texture reads: the packed domain bit,
an unpacking decode table, the hash offset value, and two triples
of line coefficients. The image in Figure 4 renders at 461
Mpix/sec (i.e. 720 frames/sec at 8002 resolution).
Figure 5 shows two additional examples. The outlines of some 81
characters from the “Curlz” font are converted to vector data in a
10242 image. The wide spacing between characters is necessary
for the sprite application presented later in Figure 6. Spatial
hashing reduces storage from 6.3MB to 495KB (3.8 bits/pixel).
The tree example is vectorized in a 5122 image, and is reduced
from 1.6MB to 254KB. Note that these examples have a greater
density of discontinuities than would likely be found in many
practical applications.
Our prototype can easily be generalized to represent quadratics or
cubics instead of lines, or to represent thick vector lines (in which
case domain bit 𝑏1 is unnecessary).

Domain image
1282×8bits

Hash table 𝐻
1062×2×24bits

Offset Φ
592×16bits

Rendered image (91KB)
(720 fps)

Close-up showing the image cell structure.

Figure 4: Spatial hashing of sparse discontinuity vectors in a
2562 image. (The hash table stores line coefficients, which we
visualize using the discontinuity shader.)

495KB

(690 fps)
Close-up
(820 fps)

 254KB
(760 fps)

Close-up
(700 fps)

Figure 5: Two additional examples, with close-up views.

Texture sprites. Sprites are high-resolution decals instanced over
a domain using texture indirection [Lefebvre and Neyret 2003].
For example they can be used to place character glyphs on a page.
We use spatial hashing to compactly store such sprite maps.
In Figure 6 we store pointers to two sprites per domain grid cell.
The sprites themselves are represented using hashed discontinuity
images as described previously, so this example demonstrates two
nested spatial hashes. Even for this relatively dense sprite map,
storage is compact and rendering performance is excellent.

Input sprite map (𝑢=5122)
2097KB

Hash table (𝑚=3132)
784KB

Offset table (𝑟=2002)
80KB

Final rendering (225 fps) Close-up (213 fps)

Figure 6: Spatial hashing of a sprite map. The sprites are the
font characters stored in the image of Figure 5, so here we use
two nested spatial hashes.

Alpha channel compression. In images with alpha masks, most
alpha values are either 0 or 1, and only a small remaining subset is
fractional. We pack this sparse subset in a hashed texture, which
is blocked to support native bilinear filtering.
In the example of Figure 7, we use an R5G5B5A1 image where
the one-bit alpha channel is 1 to indicate full opacity, the color
(0,0,0,0) is reserved for full transparency, or else the fractional
alpha value is placed in the spatial hash. Storage for the alpha
channel is reduced from 8 to 1.7 bits per pixel (including the 1 bit
alpha channel). Rendering rate is about 1170 frames/sec. Here is
HLSL pseudocode:
float4 AlphaCompressedTexture(float2 p) : COLOR {
 float4 pix = tex2D(STexture, p); // R5G5B5A1
 if (pix.a == 1) { // fully opaque pixel, no-op
 } else if (!any(pix)) { // fully transparent pixel, no-op
 } else { // fractional alpha in hash table
 pix.a = BlockedHashedTexture(p*scale);
 }
 // optimized: if (dot(1-pix.a,pix.rgb)) pix.a = Blocked...
 return pix;
}

For traditional R8G8B8 images, an alternative is to use a coarse
2-bit domain image at the same resolution as the hashed alpha
blocks, yielding overall alpha storage of 0.83 bits per pixel and a
rendering rate of 830 frames/sec.

Image
5662

Fractional alpha
𝑛=5,892 (1.8%)

 Hashed alpha
1642 (𝑚=412)

 Offset table
 𝑟=242

Figure 7: Alpha channel compression using spatially hashed
fractional alpha values, with block size 𝑏=3.

7.2 3D domains
3D-parameterized surface texture. Octree textures [Benson and
Davis 2002; DeBry et al 2002] store surface color as sparse
volumetric data parameterized by the intrinsic surface geometry.
Such volumetric textures offer a simple solution for seamless
texturing with nicely distributed spatial samples. Octree traversal
involves a costly chain of texture indirections, although this cost
can be mitigated by larger 𝑁3-trees [Lefebvre et al 2005].
Perfect hashing provides an efficient packed representation. We
use a block-based hash for native trilinear filtering. As discussed
in Section 6, the example of Figure 8 requires a total of 45.9 MB
at optimal block size 𝑏=2, compared to 78.9 MB for an indirec-
tion table at optimal block size 𝑏=6. The hashed representation
renders at 530 fps, or 300 fps if including mipmapping.
For the same model, an octree constructed for nearest sampling
occupies 18.0 MB and achieves only 180 fps. However, for a fair
comparison, an unblocked spatial hash also constructed for
nearest sampling takes just 7.5 MB and renders at 370 fps. Thus,
a spatial hash can be more than twice as compact than an octree,
which is in turn generally more compact than 𝑁3-trees with 𝑁>2.

 Surface 3D data
 10243

Hash table
833×33

Offset table
453

Figure 8: Spatial hashing of 3D surface data. Block size 𝑏=2.

3D painting. A 3D hashed texture is well suited for interactive
painting, because it is compact enough to uniformly sample a
surface at high resolution, yet efficient enough for real-time
display and modification. One advantage over adaptive schemes
like octrees is that, just as in traditional 2D painting, we need not
update any pointer-based structures during interaction.
One complication is that graphics systems do not yet allow effi-
cient rendering into a 3D texture. Thus, to enable fast
modification of the hashed data on current systems, we extend our
hash function to map 3D domains to 2D textures. This simply
involves redefining 𝑀0,𝑀1 as 2×3 matrices of the form

�1 0 𝑐1
0 1 𝑐2

� , where 𝑐1, 𝑐2 are coprime with both 𝑚� and 𝑟̅.

Note that this corresponds to displacing 2D slices of the volume
data, and thus retains coherence along only 2 of the 3 dimensions.
We store position tags along with the hashed data. Then, during
painting, we perform rasterization passes over the 2D hashed
texture. For each pixel, the shader compares the paintbrush
position with the stored position tag and updates the hashed color
appropriately. After painting is complete, the hashed 2D data
could be transferred to a block-based 3D hash or to a conventional
texture atlas.
For the horse example of Figure 9, we hash a 20483 volumetric
texture into a 24372 image. The hashed texture takes 17.8MB, the
position tags 35.6MB, and the 10742 offset table 2.3MB, for a
total of 55.7MB. Painting proceeds at a remarkable rate of 190
frames/sec, as demonstrated in the accompanying video. Note
that since we are modifying the full hashed data each frame, the
paintbrush can be any image of arbitrary size without any loss in
performance. The data in Figure 8 was also created this way.

 Before After Before After

Rendered surface Close-up of hashed data
Figure 9: Surface painting with a 3D→2D perfect hash function.

3D simulation. We can also let a finite-element simulation
modify the surface data, again as a rasterization pass over the 2D
hash table. Here the elements are voxels intersecting the surface.
As in [Lefebvre et al 2005], for each element we store 2D pointers
to the 3D-adjacent elements (some of which may be undefined).
Figure 10 shows two frames from the accompanying video, in
which fluid flow is interactively simulated on a 2563 sparse grid at
103 frames/sec. (Rendering itself proceeds at 1527 frames/sec.)

Figure 10: Physical simulation on hashed voxelized surface data.

Surface collision detection. Several GPU schemes find possible
inter-surface collisions using image-space visibility queries [e.g.
Govindaraju et al 2004]. Because the queries test for separability
along the view direction, hierarchical decomposition is useful to
reduce false positives. And, overcoming image-precision errors
involves a Minkowski dilation of each primitive.
A spatial hash enables an efficient object-space framework for
conservative collision detection – we discretize two surfaces 𝑆𝐴,𝑆𝐵
into voxels and intersect these. Let Vox𝑔(𝑆) be the sparse voxels
of size 𝑔 that intersect surface 𝑆. Rather than directly computing
Vox𝑔(𝑆𝐴) ∩ Vox𝑔(𝑆𝐵), we test the voxel centers of one surface
against a dilated version of the voxels from the other surface.
That is, we compute Vox𝑔(𝑆𝐴 + 𝑆𝑒) ∩ Centers(Vox𝑔(𝑆𝐵)) where
“+” denotes Minkowski sum, 𝑆𝑒 is a sphere of voxel circumradius
𝑒 = 𝑔√3/2, and Centers returns the voxel centers.
We store the sparse voxels Vox𝑔(𝑆𝐴 + 𝑆𝑒) as a blocked spatial
hash, and the points Centers(Vox𝑔(𝑆𝐵)) as a 2D image. At
runtime, given a rigid motion of 𝑆𝐵, we apply a rasterization pass
over its stored voxel centers. The shader transforms each center
and tests if it lies within a defined voxel of the spatial hash of 𝑆𝐴.
The intersecting voxels of 𝑆𝐵 provide a tight conservative approx-
imation of the intersection curve. In addition to using a traditional
occlusion query, we can render the intersecting voxels by letting
the 2D image of 𝑆𝐵 be defined as a second (3D→2D) spatial hash.
In Figure 11, the gargoyle surface 𝑆𝐴 is voxelized on a 10243 grid.
Its spatial hash consists of a 463 hash table containing blocks of 63
bits, a 263 offset table, and a 1713 domain-bit volume, for a total
of 3.3MB. (By comparison, an indirection table would require
6.3MB, with optimal block size 133.) The voxel center points of
the horse surface 𝑆𝐵 are stored in a 9612 image of 5.5MB.

𝐻 2762×35

Φ 263

dom. bit
1712×22 Detected possible collisions Close-up view

Figure 11: Surface collision detection on 10243 grids at 143 fps. Red
voxels include possible inter-surface intersections; two tables (𝐻 and
domain-bit) are compacted by 8× along one axis to create 8-bit textures.

8. Discussion
Table 2 summarizes quantitative results for perfect spatial hashing
in the various applications.
Memory size. The offset table sizes correspond to about 3 to 7
bits per data entry, which is good considering the theoretical
lower-bound of 1.44 bits. Because the 8-bit offsets are a poor
encoding for small datasets where 𝑚� < 256, we also include the
theoretical bit rate if one were allowed coordinates with ⌈log2 𝑚�⌉
bits. Our practical datasets have sparsity structure in the form of
clusters or lower-dimensional manifolds. The two high numbers
(for the font and sprite maps) are due to repetitive patterns in this
data sparsity. The last two table rows show hashing results on
artificial randomly distributed data. Such random data allows a
more compact hash structure, with just under 3 bits per data.

Construction cost. The two preprocess times are for fast con-
struction and for binary search optimization over the offset table
size. (All other results assume optimized table sizes.)

Runtime coherence. We compare rendering performance using
perfect hashes constructed with (1) random matrices 𝑀0,𝑀1 to
simulate pseudorandom noncoherent hash functions, (2) identity
matrices 𝑀0,𝑀1 but no coherence optimization, and finally (3)
coherence optimization. Thus, the improvement 1→2 is due to the
coherent access to the offset table, and the improvement 2→3 is
due to the coherence optimization of Section 4.4. The optimiza-
tion creates small coherent clusters, as can be visualized in the
hash tables (e.g. Figure 1), and as reported by the metric 𝒩�𝐻 in
the last column. Actual speedup is unfortunately not commensu-
rate. Better knowledge of the inner workings of the GPU texture
cache could allow for improved coherence optimization.

Limitations. One main constraint in our current hashing scheme
is that the data sparsity structure must remain static, since the
perfect hash construction is a nontrivial operation. However, the
data values themselves can be modified efficiently as demonstrat-
ed in the 3D painting and simulation applications.
Like [Fox et al 1992], our construction algorithm does not provide
a guarantee on the size of the offset table necessary to create a
perfect hash. In theory the size could exceed 𝑂(𝑛). However, in
practice we attain perfect hashes whose sizes range from 3𝑛 to 7𝑛
bits, where the good case is randomly distributed data and the bad
case is data with highly repetitive sparsity structure.
Our current hash structure stores data at a spatially uniform
resolution. We could support adaptive resolution by introducing a
mipmapped indirection table with sharing of blocks between
levels as in [Lefohn et al 2006]. Spatial hashing would then be
used to compress this mipmapped indirection table.

Application Dataset
Block
size
𝑏

Domain
grid
𝑢

Defined
data
𝑛

Data
density
𝜌=𝑛/𝑢

Hash
table
𝑚

Offset
table
𝑟

Offset table
bits/𝑛

Construction
(sec)

Num.
GPU
instr.

Runtime (frames/sec)
dep. on hash coherence

Opt.
coh.
𝒩�𝐻 Theor. 8-bit Φ Fast Opt. 𝑟 No coh. No opt. Opt.

Vector image teapot - 2562 11,155 17.0% 1062 592 4.37 4.99 0.2 0.9 40 694 725 729 .278
Vector image font - 10242 33,562 3.2% 1842 1232 7.21 7.21 0.8 2.3 40 636 665 689 .216
Vector image tree - 5122 28,462 10.9% 1692 912 4.66 4.66 0.5 2.0 40 675 727 760 .232
Sprites text - 5122 96,174 36.7% 3132 2002 6.65 6.65 4.5 7.9 121 208 237 272 .419
Alpha compr. boy 3 1892 1,658 4.6% 412 242 4.17 5.66 0.0 0.0 23 1147 1172 1169 .290
3D texture armadillo 2 5123 562,912 0.4% 833 453 3.40 3.89 7.0 350 9 439 536 540 .113
Painting horse - 20483 5.9M 0.07% 24372 10742 3.15 3.15 27.7 1400 10 270 354 403 .055
Simulation car - 2563 142,829 0.9% 3812 1702 3.24 3.24 1.7 15 11 1221 1478 1527 .093
Collision det. gargoyle 6 1713 94,912 1.9% 463 263 3.33 4.44 0.6 14 38 127 134 143 .153
- random - 20482 100,000 2.4% 3182 1362 2.96 2.96 0.2 20 - - - - -
- random - 5123 1.0M 0.7% 1013 523 2.95 3.37 6.0 830 - - - - -

Table 2: Quantitative results for perfect hashing.

Alternatives. Prior GPU-based spatial data structures include
indirection tables, 𝑁3 trees, and octrees [Lefohn et al 2006]. Even
though the octree is generally the most concise representation in
this spectrum, our perfect hash is yet more concise as reported in
Section 7.2, so memory savings is a key benefit of spatial hashing.
On the other hand, indirection tables and trees currently offer
more flexibility for dynamic update and adaptive resolution.

9. Summary and Future work
We have extended perfect hashing to multidimensional domains
and hash tables, and shown that the multidimensional setting
permits a simple hash function that is extremely harmonious with
current GPU architecture. We design and optimize the hash to
exploit the access coherence common in graphics processing, and
explore several techniques to encode data sparsity. We have
shown that perfect hashing is practical in many applications. In
particular, we demonstrate compact vector images and sprite
maps, real-time unconstrained painting of surface models at 20483
resolution, and real-time collision detection at 10243 resolution
using a compact representation.
Areas for future work include:
• Explore how best to compress hashed data for serialization.
• Further study the use of hashing to encode boundary conditions

in simulation.
• Consider higher-dimensional sparse domains such as configura-

tion spaces and time-dependent volumetric data.
• Extend hashing to support efficient dynamic updates and

adaptive resolution.

References
BENSON, D., AND DAVIS, J. 2002. Octree textures. ACM SIGGRAPH,

785-790.
BLYTHE, D. 2006. The Direct3D 10 system. ACM SIGGRAPH.
BRAIN, M., AND THARP, A. 1990. Perfect hashing using sparse matrix

packing. Information Systems, 15(3), 281-290.
CANTLAY, I. 2005. Mipmap-level measurement. GPU Gems II, 437-449.
CZECH, Z., HAVAS, G., AND MAJEWSKI, B. 1997. Perfect hashing.

Theoretical Computer Science 182, 1-143.
DEBRY, D., GIBBS, J., PETTY, D., AND ROBINS, N. 2002. Painting and

rendering on unparameterized models. ACM SIGGRAPH, 763-768.
FOX, E., HEATH, L., CHEN, Q., AND DAOUD, A. 1992. Practical minimal

perfect hash functions for large databases. CACM 33(1), 105-121.
FREDMAN, M., KOMLÓS, J., AND SZEMERÉDI, E. 1984. Storing a sparse

table with O(1) worst case access time. JACM 31(3), 538-544.
GAEDE, V., AND GÜNTHER, O. 1998. Multidimensional access methods.

ACM Computing Surveys 30(2), 170-231.
GOVINDARAJU, N., LIN, M., AND MANOCHA, D. 2004. Fast and reliable

collision culling using graphics hardware. Proc. of VRST, 2-9.
HO, Y. 1994. Application of minimal perfect hashing in main memory

indexing. Master’s Thesis, MIT.
KRAUS, M., AND ERTL, T. 2002. Adaptive texture maps. Graphics

Hardware, 7-15.
LEFEBVRE, S., AND NEYRET, F. 2003. Pattern based procedural textures.

Symposium on Interactive 3D Graphics, 203-212.
LEFEBVRE, S., HORNUS, S., AND NEYRET, F. 2005. Octree textures on the

GPU. In GPU Gems II, 595-613.
LEFOHN, A., KNISS, J., STRZODKA, R., SENGUPTA, S., AND OWENS, J.

2006. Glift: Generic, efficient, random-access GPU data structures.
ACM TOG 25(1).

LOOP, C., AND BLINN, J. 2005. Resolution-independent curve rendering
using programmable graphics hardware. SIGGRAPH, 1000-1009.

MEHLHORN, K. 1982. On the program size of perfect and universal hash
functions. Symposium on Foundations of Computer Science, 170-175.

MIRTICH, B. 1996. Impulse-based dynamic simulation of rigid body
systems. PhD Thesis, UC Berkeley.

ÖSTLIN, A., AND PAGH, R. 2003. Uniform hashing in constant time and
linear space. ACM STOC, 622-628.

QIN, Z., MCCOOL, M., AND KAPLAN, C. 2006. Real-time texture-mapped
textured glyphs. Symposium on Interactive 3D Graphics and Games.

RAMANARAYANAN, G., BALA, K., AND WALTER, B. 2004. Feature-based
textures. Eurographics Symposium on Rendering, 65-73.

RAY, N., CAVIN, X., AND LÉVY, B. 2005. Vector texture maps on the
GPU. Technical Report ALICE-TR-05-003.

SAGER, T. 1985. A polynomial time generator for minimal perfect hash
functions. CACM 28(5), 523-532.

SCHMIDT, J., AND SIEGEL, A. 1990. The spatial complexity of oblivious
k-probe hash functions, SIAM Journal on Computing, 19(5), 775-786.

SEN, P., CAMMARANO, M., AND HANRAHAN, P. 2003. Shadow silhouette
maps. ACM SIGGRAPH, 521-526.

SEN, P. 2004. Silhouette maps for improved texture magnification.
Graphics Hardware Symposium, 65-73.

TARINI, M., AND CIGNONI, P. 2005. Pinchmaps: Textures with customi-
zable discontinuities. Eurographics Conference, 557-568.

TESCHNER, M., HEIDELBERGER, B., MÜLLER, M., POMERANETS, D., AND
GROSS, M. 2003. Optimized spatial hashing for collision detection of
deformable objects. Proc. VMV, 47-54.

TUMBLIN, J., AND CHOUDHURY, P. 2004. Bixels: Picture samples with
sharp embedded boundaries. Symposium on Rendering, 186-194.

WINTERS, V. 1990. Minimal perfect hashing in polynomial time, BIT
30(2), 235-244.

Acknowledgments
We thank Dan Baker and Peter-Pike Sloan for their assistance
with Microsoft DirectX.

Appendix: Parametrized hash probability
In this section we derive the probability of finding a set of valid
parameterized position hashes as described in Section 5.
While the map 𝑆 → 𝐻 is a rare perfect hash, the map 𝑈 → 𝐻 from
the full domain has random distribution over the hash table, which
we have verified empirically. Thus, the probability distribution
for the number 𝑋 of entries ℎ−1(𝑠) ⊂ 𝑈 mapping to a particular
table slot is a binomial distribution

Pr(𝑋 = 𝑥) = 𝑏(𝑥; 𝑢,𝑚) = �𝑢𝑥� �
1
𝑚
�
𝑥
�1 − 1

𝑚
�
𝑢−𝑥

.

Since 𝑢/𝑚 ≫ 5, this binomial is well approximated by a normal
distribution with mean 𝜇 = 𝑢/𝑚 and variance 𝜎2 = 𝑢/𝑚.
Next let us analyze the probability of finding a valid parameter-
ized hash for a slot containing 𝑥 random entries. For each
parameter 𝑘 ∈ {1, … ,𝐾}, the probability that the hash value
ℎ𝑘(𝑝̂) ∈ {1, … ,𝑅} at the defined point 𝑝̂ is different from that of
all other 𝑥 − 1 points is (1 − 1/𝑅)𝑥−1. Therefore, the probability
that at least one of the 𝐾 parameters succeeds is

Pr(𝑥;𝑢,𝑚) = 1 − �1 − �1 − 1
𝑅
�
𝑥−1

�
𝐾

.

Combining these formulas, the probability that all 𝑚 slots find
valid parameterized hashes is

Pr(𝑢,𝑚) ≈ � � 1
√2𝜋𝜎

𝑒−(𝑥−𝜇)2/2𝜎2 �1− �1 − �1− 1
𝑅�

𝑥−1
�
𝐾
�

𝑥=1…𝑢

�
𝑚

.

For a typical table size 𝑚∼2562 and our default choice 𝐾=𝑅=28,
this probability is near 100% if the data density is greater than
𝜌 ≈ 𝑚/𝑢 ∼ 1/800, and drops sharply below this point.

	1. Introduction
	2. Related work on hashing
	3. Our perfect hashing scheme
	3.1 Overview and terminology
	3.2 GPU implementation

	4. Hash construction
	4.1 Selection of table sizes
	4.2 Selection of hash coefficients
	4.3 Creation of offset table
	4.4 Optimization of hash coherence

	5. Sparsity encoding
	6. Filtering and blocking
	7. Applications and results
	7.1 2D domains
	7.2 3D domains

	8. Discussion
	9. Summary and Future work
	References
	Acknowledgments
	Appendix: Parametrized hash probability

