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Figure 1: Given a small exemplar image, our parallel synthesis algorithm computes windows of spatially deterministic texture from an 
infinite landscape in real-time.  Synthesis variation is obtained using a novel jittering technique that enables several intuitive controls.

Abstract 
We present a texture synthesis scheme based on neighborhood 
matching, with contributions in two areas: parallelism and control.  
Our scheme defines an infinite, deterministic, aperiodic texture, 
from which windows can be computed in real-time on a GPU.  
We attain high-quality synthesis using a new analysis structure 
called the Gaussian stack, together with a coordinate upsampling 
step and a subpass correction approach.  Texture variation is 
achieved by multiresolution jittering of exemplar coordinates.  
Combined with the local support of parallel synthesis, the jitter 
enables intuitive user controls including multiscale randomness, 
spatial modulation over both exemplar and output, feature drag-
and-drop, and periodicity constraints.  We also introduce synthe-
sis magnification, a fast method for amplifying coarse synthesis 
results to higher resolution. 
Keywords:  runtime content synthesis, data amplification, Gaussian stack, 
neighborhood matching, coordinate jitter, synthesis magnification. 

1. Introduction 
Sample-based texture synthesis analyzes a given exemplar to 
create visually similar images.  In graphics, these images often 
contain surface attributes like colors and normals, as well as 
displacement maps that define geometry itself.  Our interest is in 
applying synthesis to define infinite, aperiodic, deterministic 
content from a compact representation.  Such data amplification is 
particularly beneficial in memory-constrained systems.  Thanks to 
growing processor parallelism, we can now envision sophisticated 
techniques for on-demand content synthesis at runtime. 
There are several approaches to sampled-based texture synthesis, 
as reviewed in Section 2.  While tiling methods are the fastest, 
and patch optimization methods produce some of the best results, 
neighborhood-matching algorithms allow greater fine-scale 
adaptability during synthesis. 
In this paper, we present a new neighborhood-matching method 
with contributions in two areas: efficient parallel synthesis and 
intuitive user control. 

Parallel synthesis.  Most neighborhood-matching synthesis 
algorithms cannot support parallel evaluation because their 
sequential assignment of output pixels involves long chains of 
causal dependencies.  For the purpose of creating large environ-
ments, such sequential algorithms have two shortcomings: 
(1) It is impractical to define huge deterministic landscapes 
because the entire image must be synthesized at one time, i.e. one 
cannot incrementally compute just a window of it. 
(2) The computation cannot be mapped efficiently onto a parallel 
architecture like a GPU or multicore CPU. 
Our method achieves parallelism by building on the order-
independent texture synthesis scheme of Wei and Levoy [2003].  
They perform synthesis using a multiscale pyramid, applying 
multiple passes of pixel correction at each pyramid level to match 
neighborhoods of the exemplar [Popat and Picard 1993; Wei and 
Levoy 2000].  Their crucial innovation is to perform correction on 
all pixels independently, to allow deterministic synthesis of pixels 
in arbitrary order.  They investigate a texture synthesis cache for 
on-demand per-pixel synthesis in rasterization and ray tracing. 
We extend their approach in several directions.  We improve 
synthesis quality using three novel ideas: 
• Gaussian image stack:  During texture analysis, we (conceptu-

ally) capture Gaussian pyramids shifted at all locations of the 
exemplar image, to boost synthesis variety. 

• Coordinate upsampling:  We initialize each pyramid level using 
coordinate inheritance, to maintain patch coherence. 

• Correction subpasses: We split each neighborhood-matching 
pass into several subpasses to improve correction.  Surprisingly, 
the results surpass even a traditional sequential traversal. 

Moreover, by evaluating texture windows rather than pixel que-
ries, we are able to cast synthesis as a parallel SIMD computation.  
We adapt our scheme for efficient GPU evaluation using several 
optimizations.  Our system generates arbitrary windows of texture 
from an infinite deterministic canvas in real-time – 2562 pixels in 
26 msec.  For continuous window motions, incremental computa-
tion provides further speedup. 
User control.  While many synthesis schemes offer some forms 
of user guidance (as discussed in Section 2), they provide little 
control over the amount of texture variability.  Typically, output 
variation is obtained by random seeding of boundary conditions.  
As one modifies the random seeds or adjusts algorithmic parame-
ters, the synthesized result changes rather unpredictably. 

 



 

 

We introduce an approach for more explicit, intuitive control.  
The key principle is coordinate jitter – achieving variation solely 
by perturbing exemplar coordinates at each level of the synthe-
sized pyramid.  We initialize each level by simple coordinate 
inheritance, so by design our scheme produces a tiling in the 
absence of jitter.  And, the tiles equal the exemplar if it is toroidal.  
Starting with this simple but crucial result, randomness can be 
gradually added at any resolution, for instance to displace the 
macro-features in the texture, or to instead alter their fine detail. 
We expose a set of continuous sliders that control the magnitude 
of random jitter at each scale of synthesis (Figure 1).  Because 
parallel synthesis has local support, the output is quite coherent 
with respect to continuous changes in jitter parameters, particular-
ly in conjunction with our new Gaussian image stack. 
Multiresolution coordinate jitter also enables several forms of 
local control.  It lets randomness be adjusted spatially over the 
source exemplar or over the output image.  The jitter can also be 
overridden to explicitly position features, through a convenient 
drag-and-drop user interface.  Thanks to the multiscale coherent 
synthesis, the positioned features blend seamlessly with the 
surrounding texture.  Finally, the jittered coordinates can be 
constrained to more faithfully reconstruct near-regular textures.  
For all these control paradigms, real-time GPU evaluation pro-
vides invaluable feedback to the user. 
Synthesis magnification.  A common theme in our contributions 
is that the primary operand of synthesis is exemplar coordinates 
rather than color.  As another contribution along these lines, we 
introduce a fast technique for generating high-resolution textures.  
The idea is to interpret the synthesized coordinates as a 2D patch 
parametrization, and to use this map to efficiently sample a 
higher-resolution exemplar.  This magnification is performed in 
the final surface shader and thus provides additional data amplifi-
cation with little memory cost. 

2. Related work 
There are a number of approaches for sampled-based synthesis. 
Image Statistics.  Texture can be synthesized by reproducing 
joint statistics of the exemplar [e.g. Zalesny and Van Gool 2001]. 
Precomputed tiles.  Cohen et al [2003] precompute a set of 
Wang Tiles designed to abut seamlessly along their boundaries.  
With a complete tile set, runtime evaluation is simple and parallel, 
and is therefore achievable in the GPU pixel shader [Wei 2004].  
Some coarse control is possible by transitioning between tiles of 
different textures [Cohen et al 2003; Lefebvre and Neyret 2003].  
The main drawback of tile-based textures is their limited variety 
due to the fixed tile set.  Also, the regular tiling structure may 
become apparent when the texture is viewed from afar, especially 
for non-homogeneous textures. 
Patch optimization.  Texture is created by iteratively overlapping 
irregular patches of the exemplar [Praun et al 2000] to minimize 
overlap error [Liang et al 2001].  Inter-patch boundaries are 
improved using dynamic programming [Efros and Freeman 2001] 
or graph cut [Kwatra et al 2003].  Patch layout is a nontrivial 
optimization, and is therefore precomputed.  The layout process 
seems to be inherently sequential.  Control is possible by letting 
the user override the delineation and positioning of patches. 
Neighborhood matching.  The texture is typically generated one 
pixel at a time in scanline or spiral order.  For each pixel, the 
partial neighborhood already synthesized is compared with 
exemplar neighborhoods to identify the most likely pixels, and 
one is chosen at random [Garber 1981; Efros and Leung 1999].  
Improvements include hierarchical synthesis [Popat and Picard 
1993], fast VQ matching [Wei and Levoy 2000], coherent synthe-

sis to favor patch formation [Ashikhmin 2001], and precomputed 
similarity sets [Tong et al 2002; Zelinka and Garland 2002]. 
Very few neighborhood-matching schemes offer the potential for  
synthesis parallelism.  One is the early work of De Bonet [1997] 
in which pyramid matching is based solely on ancestor coordi-
nates.  The other is the order-independent approach of Wei and 
Levoy [2003] which considers same-level neighbors in a multi-
pass neighborhood correction process. 
One advantage of neighborhood-matching schemes is their flexi-
bility in fine-scale control.  For instance, Ashikhmin [2001] lets 
the user guide the process by initializing the output pixels with 
desired colors.  The image analogies framework of Hertzmann et 
al [2001] uses a pair of auxiliary images to obtain many effects 
including super-resolution, texture transfer, artistic filters, and 
texture-by-numbers.  Tonietto and Walter [2002] smoothly transi-
tion between scaled patches of a texture to locally control the 
pattern scale.  Zhang et al [2003] synthesize binary texton masks 
to maintain integrity of texture elements, locally deform their 
shapes, and transition between two homogeneous textures.  Our 
contribution is control over the magnitude of texture variability 
(both spectrally and spatially), and our approach can be used in 
conjunction with these other techniques. 
For an incrementally moving window, one might consider filling 
the exposed window region by applying existing constrained 
synthesis schemes [e.g. Efros and Leung 1999; Liang et al 2001].  
Note however that the resulting data then lacks spatial determin-
ism because it depends on the motion path of the window, unlike 
in parallel synthesis. 

3. Parallel synthesis method 

3.1 Basic scheme 
From an 𝑚×𝑚 exemplar image 𝐸, we synthesize an image 𝑆 in 
which each pixel 𝑆[𝑝] stores the coordinates 𝑢 of an exemplar 
pixel (where both 𝑝,𝑢 ∈ ℤ2).  Thus, the color at pixel 𝑝 is given 
by 𝐸[𝑢] = 𝐸�𝑆[𝑝]�. 
Overview.  As illustrated in Figure 2, we apply traditional hierar-
chical synthesis, creating an image pyramid 𝑆0, 𝑆1, … , (𝑆𝐿=𝑆) in 
coarse-to-fine order, where 𝐿 = log2 𝑚. 

  

 

Exemplar 𝐸 Coordinates 𝑢  
  

𝑆0 𝑆1 …   𝑆𝐿 

 
𝐸[𝑆0] 𝐸[𝑆1]    𝐸[𝑆𝐿] 
Figure 2: Given an exemplar, we synthesize its coordinates into a 
coarse-to-fine pyramid; the bottom row shows the corresponding 
exemplar colors.  As explained later in Section 3.4, deterministi-
cally evaluating the requested (yellow) pyramid requires a 
broader pyramid padded with some indeterministic (hazy) pixels. 
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Figure 3: The three steps of synthesis at each pyramid level. 

For each pyramid level, we perform three steps (Figure 3): up-
sampling, jitter, and correction.  As in [Wei and Levoy 2003], the 
correction step consists of a sequence of passes, where within a 
pass, each pixel is replaced independently by the exemplar pixel 
whose neighborhood best matches the current synthesized neigh-
borhood.  Here is pseudocode of the overall process: 
Synthesize() 
 𝑆−1 ≔ (0 0)𝑇 // Start with zero 2D coordinates. 
 for 𝑙 ∈ {0 …𝐿} // Traverse levels coarse-to-fine. 
  𝑆𝑙 ≔ Upsample(𝑆𝑙−1) // Upsample the coordinates. 
  𝑆𝑙 ≔ Jitter(𝑆𝑙) // Perturb the coordinates. 
  if (𝑙 > 2) // For all but three coarsest levels, 
   for {1 … 𝑐} //  apply several correction passes, 
    𝑆𝑙 ≔ Correct(𝑆𝑙) //  matching exemplar neighborhoods. 
 return 𝑆𝐿 

Previous hierarchical techniques represent the exemplar using a 
Gaussian pyramid 𝐸0,𝐸1, … , (𝐸𝐿=𝐸).  We first describe our 
technique using this conventional approach, and in Section 3.2 
modify it to use the new Gaussian stack structure.  To simplify 
the exposition, we let ℎ𝑙 denote the regular output spacing of 
exemplar coordinates in level 𝑙: ℎ𝑙 = 1 for a pyramid and 
ℎ𝑙 = 2𝐿−1 for a stack. 
Upsampling.  Rather than using a separate synthesis pass to 
create the finer image from the next-coarser level, we simply 
upsample the coordinates of the parent pixels.  Specifically, we 
assign to each of the four children the scaled parent coordinates 
plus a child-dependent offset: 

𝑆𝑙[2𝑝+Δ] ≔ (2𝑆𝑙–1[𝑝] + ℎ𝑙  Δ) mod 𝑚,    Δ ∈ ��0
0� , �0

1� , �1
0� , �0

1�� .1 

If the exemplar is toroidal and jitter is disabled, successive up-
samplings create the image 𝑆𝐿[𝑝] = 𝑝 mod 𝑚, which corresponds 
to tiled copies of the exemplar 𝐸; the correction step then has no 
effect because all neighborhoods of 𝑆𝐿 are present in 𝐸.  
Jitter.  To introduce spatially deterministic randomness, we 
perturb the upsampled coordinates at each level by a jitter func-
tion, which is the product of a hash function ℋ:ℤ2 → [−1, +1]2 
and a user-specified per-level randomness parameter 0 ≤ 𝑟𝑙 ≤ 1: 

𝑆𝑙[𝑝] ≔ �𝑆𝑙[𝑝]+𝐽𝑙(𝑝)� mod 𝑚,  where 𝐽𝑙(𝑝)= �ℎ𝑙  ℋ(𝑝) 𝑟𝑙+ �.5
.5
��. 

Note that the output-spacing factor ℎ𝑙 reduces the jitter amplitude 
at finer levels, as this is generally desirable.  If the correction step 
is turned off, the effect of jitter at each level looks like a quadtree 
of translated windows in the final image: 

    
Jitter at coarsest level… …Jitter at fine levels 
                                                                 
1 We use “𝑢 mod 𝑚” and ⌊𝑢⌋ to denote per-coordinate operations. 

Correction.  The correction step takes the jittered coordinates and 
alters them to recreate neighborhoods similar to those in the 
exemplar.  Because the output pixels cannot consider their simul-
taneously corrected neighbors, several passes of neighborhood 
matching are necessary at each level to obtain good results.  We 
generally perform two correction passes. 
For each pixel 𝑝, we gather the pixel colors of its 5×5 neighbor-
hood at the current level, represented as a vector 𝑁𝑆(𝑝).  This 
neighborhood is compared with exemplar neighborhoods 𝑁𝐸(𝑢) 
to find the 𝐿2 best matching one. 
To accelerate neighborhood matching, we use coherent synthesis 
[Ashikhmin 2001], only considering those locations 𝑢 in the 
exemplar given by the 3×3 immediate neighbors of 𝑝.  To provide 
additional variety, we use 𝑘-coherence search [Tong et al 2002], 
precomputing for each exemplar pixel 𝑢 a candidate set 𝐶1…𝑘

𝑙 (𝑢) 
of 𝑘 exemplar pixels with similar 7×7 neighborhoods.  We set 
𝑘=2.  For good spatial distribution [Zelinka and Garland 2002], 
we require the 𝑘 neighborhoods to be separated by at least 5% of 
the image size.  The first entry is usually the identity 𝐶1𝑙(𝑢)=𝑢.  
We favor patch formation by penalizing jumps (𝐶2…𝑘

𝑙 ) using a 
parameter 𝜅 as in [Hertzmann et al 2001]. 
These elements are captured more precisely by the expression 

𝑆𝑙[𝑝] ≔ 𝐶𝑖min
𝑙 (𝑆𝑙[𝑝 + Δmin] − ℎ𝑙 Δmin) ,   where 

𝑖min,Δmin = argmin
𝑖∈{1…𝑘}

�𝑁𝑆𝑙(𝑝) −𝑁𝐸𝑙 �𝐶𝑖
𝑙(𝑆𝑙[𝑝 + Δ] − ℎ𝑙Δ)��𝜑(𝑖) 

              
Δ∈��–1

–1
�,�–1

0
�,…,�+1

+1
��

 

in which  𝜑(𝑖) = � 1, 𝑖 = 1
1 + 𝜅, 𝑖 > 1. 

3.2 Gaussian image stack 
For exemplar matching, the traditional approach is to construct a 
Gaussian image pyramid 𝐸0,𝐸1, … , (𝐸𝐿=𝐸) with the same struc-
ture as the synthesis pyramid.  However, we find that this often 
results in synthesized features that align with a coarser “grid” 
(Figure 6a) because ancestor coordinates in the synthesis pyramid 
are snapped to the quantized positions of the exemplar pyramid.  
One workaround would be to construct a few Gaussian pyramids 
at different locations within the exemplar, similar to the multiple 
sample pyramids used in [Bar-Joseph et al 2001]. 
Our continuous jitter framework has led us to a more general 
solution, which is to allow synthesized coordinates 𝑢 to have fine 
resolution at all levels of synthesis.  Of course, we should then 
analyze additional exemplar neighborhoods.  Ideally, we desire a 
full family of 𝑚2 Gaussian pyramids, one for each translation of 
the exemplar image at its finest level.  Fortunately, the samples of 
all 𝑚2 exemplar pyramids actually correspond to a single stack of 
log2 𝑚 images of size 𝑚×𝑚, which we call the Gaussian stack 
(see illustration in Figure 4 and example in Figure 5). 
To create the Gaussian stack, we augment the exemplar image on 
all sides to have size 2𝑚×2𝑚.  These additional image samples 
come from one of three sources: an actual larger texture, a tiling if 
the exemplar is toroidal, or else reflected copies of the exemplar.  
We then apply traditional Gaussian filtering to form each coarser 
level, but without subsampling. 
To use the Gaussian stack in our synthesis scheme, the algorithm 
from Section 3.1 is unchanged, except that we reassign ℎ𝑙 = 2𝐿−𝑙 
and replace the upsampling step to account for the parent-child 
relations of the stack: 

𝑆𝑙[2𝑝 + Δ] ≔ �𝑆𝑙−1[𝑝] + �ℎ𝑙 �Δ − �.5
.5
����  mod 𝑚 . 



 

 

If the exemplar is non-toroidal, synthesis artifacts occur when the 
upsampled coordinates of four sibling pixels span a “mod 𝑚” 
boundary.  Our solution is to constrain the similarity sets such that 
𝐶𝑖(⋅) ≠ 𝑢 for any pixel 𝑢 near the exemplar border (colored red in 
Figure 4).  The effect is that the synthesized texture is forced to 
jump to another similar neighborhood away from the boundary. 
At the coarsest level (𝑙=0), all Gaussian stack samples equal the 
mean color of the exemplar image, so correction has no effect and 
we therefore disable it.  In practice, we find that correction at the 
next two levels (𝑙=1,2) is overly restrictive as it tends to lock the 
alignment of coarse features, so to allow greater control we 
disable correction on those levels as well. 
Figure 6b shows the improvement in synthesis quality due to the 
stack structure.  The effect is more pronounced during interactive 
control as seen on the video. 
The quadtree pyramid [Liang et al 2001] is a related structure that 
stores the same samples but in a different order – an array of 
smaller images at each level rather than a single image.  Because 
the quadtree samples are not spatially continuous with respect to 
fine-scale offsets, jitter would require more complex addressing. 
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Figure 4: The Gaussian stack (shown here in 1D) is formed by a 
union of pyramids shifted at all image locations.  It is construct-
ed from an augmented exemplar image in the bottom row. 
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Figure 5: The Gaussian stack captures successively larger filter 
kernels without the subsampling of Gaussian pyramids. 

  

 

  
(a) Using a Gaussian pyramid   (b) Using our Gaussian stack 

Figure 6: Compared to a traditional Gaussian pyramid, the 
Gaussian stack analysis structure leads to a more spatially uni-
form distribution of synthesized texture features. 

3.3 Correction subpasses 
When correcting all pixels simultaneously, one problem is that the 
pixels are corrected according to neighborhoods that are also 
changing.  This may lead to slow convergence of pixel colors, or 
even to cyclic behavior. 
We improve results by partitioning a correction pass into a se-
quence of subpasses on subsets of nonadjacent pixels.  
Specifically, we apply 𝑠2 subpasses, each one processing the 
pixels 𝑝 such that 𝑝 mod 𝑠 = (𝑖  𝑗)𝑇,  𝑖, 𝑗 ∈ �0 … 𝑠–1�. 

The evaluation order of the subpasses can be represented graph-
ically as an 𝑠×𝑠 matrix, shown here for 𝑠2=4: 

 

Subpass 1 
Subpass 2 
Subpass 3 
Subpass 4  

represented as �1 2
3 4�. 

There are a number of factors to consider in selecting the number 
and order of the subpasses (see Figure 7): 
• Synthesis quality improves with more subpasses, although not 

much beyond 𝑠2=9. 
• A traditional sequential algorithm is similar to a large number 

of subpasses applied in scanline order.  Interestingly, this yields 
worse results.  The intuitive explanation is that a scanline order 
gives fewer opportunities to “go back and fix earlier mistakes”, 
and consequently it is important to shuffle the subpass order. 

• On the GPU, each subpass requires a SetRenderTarget() call, 
which incurs a small cost. 

• For spatially deterministic results (Section 3.4), each subpass 
requires additional padding of the synthesis pyramid.  For ex-
ample, this cost becomes evident at {𝑐=8,   𝑠2=4} in Figure 7. 

• Even as neighborhood error decreases with many correction 
passes, the texture may begin to look less like the exemplar, 
because correction may have a bias to disproportionately use 
subregions of the exemplar that join well together.  For exam-
ple, in Figure 7 the “ripple” features become straighter.  
Removing this bias is an interesting area for future work. 

These factors present a tradeoff between performance and quality.  
We find that using two correction passes and 𝑠2=4 subpasses 
provides a good compromise.  We select the following subpass 
order to reduce the necessary pyramid padding: 

�1 4
3 2� ,  �6 8

7 5� . 

In practice, multiple subpasses result in a significant improvement 
as demonstrated in Figure 7. 
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Figure 7: Effect of modifying the number of passes and sub-
passes. Note how {𝑐=1, 𝑠2=4} is nearly as good as {𝑐=2, 𝑠2=1}.  
Exemplar is from Figure 1.  Execution times are for full pyramid 
synthesis of an 802 window.  (𝑠2> 4 is emulated on the CPU.) 



 

 

3.4 Spatially deterministic computation 
As shown in [Wei and Levoy 2003], deterministic synthesis 
requires that each correction pass start with a dilated domain that 
includes the neighborhoods of all the desired corrected pixels.  
For our case of synthesizing a deterministic texture window 𝑊𝑙 at 
a level 𝑙, we must start with a larger window 𝑊𝑙

′ ⊃ 𝑊𝑙 such that 
the correction of pixels in 𝑊𝑙 is influenced only by those in 𝑊𝑙

′. 
Recall that we apply 𝑐=2 correction passes, each consisting of 
𝑠2=4 subpasses.  Because the correction of each pixel depends on 
the previous state of pixels in its 5×5 neighborhood, i.e. at most 2 
pixels away, the transitive closure of all dependencies in the 
complete sequence of subpasses extends at most 2 𝑐 𝑠2=16 pixels.  
Therefore, it is sufficient that window 𝑊𝑙

′ have a border padding 
of 16 pixels on all sides of window 𝑊𝑙.  In fact, for our specific 
ordering of subpasses, this border only requires 10 and 11 pixels 
on the left/right and top/bottom respectively. 
The window 𝑊𝑙

′ is created by upsampling and jittering a smaller 
(half-size) window 𝑊𝑙−1 at the next coarser level.  The padding 
process is thus repeated iteratively until reaching 𝑊0

′.  Figure 2 
shows the resulting padded pyramid, in which 𝑊𝑙

′ and 𝑊𝑙 are 
identified by the outer boundaries and the non-hazy pixels respec-
tively.  For comparison, the overlaid yellow squares show a 
pyramid without padding.  Table 1 lists the padded window sizes 
required at each level to synthesize various windows. 
When panning through a texture image, we maintain a prefetch 
border of 16 pixels around the windows of all levels to reduce the 
number of updates, and we incrementally compute just the two 
strips of texture exposed at the boundaries.  Timing results are 
presented in Section 6. 

Dim. of desired 
window 𝑊𝐿=𝑊8 

Dimension of padded window at each level 
𝑊0

′ 𝑊1
′ 𝑊2

′ 𝑊3
′ 𝑊4

′ 𝑊5
′ 𝑊6

′ 𝑊7
′ 𝑊8

′ 
256 45 46 48 52 59 74 103 161 278 

1 44 44 44 44 43 42 39 34 24 
Table 1: Padded window sizes required for spatial determinism. 

3.5 PCA projection of pixel neighborhoods 
We reduce both memory and time by projecting pixel neighbor-
hoods into a lower-dimensional space.  During a 
preprocess on each exemplar and at each level, we 
run principal component analysis (PCA) on the 
neighborhoods 𝑁𝐸𝑙(𝑢), and project them as 
𝑁�𝐸𝑙(𝑢) = 𝑃6 𝑁𝐸𝑙(𝑢) where matrix 𝑃6 contains the 6 
largest principal components (see inset example).  
The synthesis correction step then computes 
𝑁�𝑆𝑙(𝑝) = 𝑃6 𝑁𝑆𝑙(𝑝) and evaluates neighborhood distance as the 
6-dimensional distance �𝑁�𝑆𝑙(𝑝) − 𝑁�𝐸𝑙(⋅)�. 

3.6 GPU implementation 
We perform all three steps of texture synthesis using the GPU 
rasterization pipeline.  The upsampling and jitter steps are simple 
enough that they are combined into a single rasterization pass.  
The most challenging step is of course the correction step. 
When implementing the correction algorithm on current GPUs, 
we must forgo some opportunities for optimization.  For instance, 
the array of 18 candidate neighborhoods 𝐶𝑖𝑙(𝑆𝑙[𝑝 + Δ] − Δ) often 
has many duplicates over the range of 𝑖 and Δ, and these dupli-
cates are usually culled in a CPU computation.  While this culling 
is currently infeasible on a GPU, the broad parallelism and effi-
cient texture caching still makes the brute-force approach 
practical, particularly if we tune the algorithm as described next. 

Quadrant packing.  Each correction subpass must write to a set 
of nonadjacent pixels, but current GPU pixel shaders do not 
support efficient branching on such fine granularity.  Thus, in a 
straightforward implementation, each subpass would cost almost 
as much as a full pass.  Instead, we reorganize pixels according to 
their “mod 𝑠” location.  For 𝑠2=4, we store the image as 

[0, 0] [0, 2] [0,1] [0,3]
[2, 0] [2, 2] [2,1] [2,3]

[1, 0] [1, 2] [1,1] [1,3]
[3, 0] [3, 2] [3,1] [3,3]

 
 
 
 
 
 

 
 

     

 
 

     

 , i.e.   

  

, 

so that each subpass corrects a small contiguous block of pixels – 
a quadrant – while copying the remaining three quadrants.  This 
quadrant reorganization complicates the texture reads somewhat, 
since the neighborhoods 𝑁𝑆𝑙(𝑝) are no longer strictly adjacent in 
texture space.  However, the read sequence still provides excellent 
texture cache locality.  The end result is that we can perform all 
four correction subpasses in nearly the same time as one full pass 
(Figure 7).  The upsampling and jitter steps still execute efficient-
ly as a single pass on these quadrant-packed images. 

Color caching.  Gathering the neighborhood 𝑁𝑆𝑙(𝑝) requires 
fetching the colors 𝐸𝑙�𝑆𝑙[𝑝 + ⋯ ]� of 25 pixels.  We reduce each 
color fetch from two texture lookups to one by caching color 
along with the exemplar coordinate 𝑢 at each pixel.  Thus, each 
pixel 𝑆[𝑝] stores a tuple (𝑢,𝐸[𝑢]). 

PCA projection of colors.  Because the coordinates 𝑢 are 2D and 
the colors 𝐸[𝑢] are 3D, tuple (𝑢,𝐸[𝑢]) would require 5 channels.  
To make it fit into 4 channels, we project colors onto their top two 
principal components (computed per exemplar).  For most tex-
tures, neighborhood information is adequately captured in this 2D 
subspace.  In fact, Hertzmann et al [2001] observe that just 1D 
luminance is often adequate. 

Channel quantization.  GPU parallelism demands a high ratio of 
computation to bandwidth.  We reduce bandwidth by packing all 
precomputed and synthesized data into 8-bit/channel textures.  We 
quantize the 6 coefficients of 𝑁�𝐸(𝑢) using different scaling factors 
to fully exploit the 8-bit range.  We store the 𝑘=2 candidate sets 
�𝐶1𝑙(𝑢),  𝐶2𝑙(𝑢)� and  projected neighborhoods 𝑁�𝐸𝑙(𝑢) as an 
RGBA and two RGB textures.  Alternatively, for a 25% synthesis 
speedup we store them as �𝐶1𝑙(𝑢),  𝑁�𝐸𝑙(𝐶1

𝑙(𝑢)),  𝐶2𝑙(𝑢),  𝑁�𝐸𝑙(𝐶2
𝑙(𝑢))� 

into four RGBA textures.  Note that byte-sized 𝑢𝑥,𝑢𝑦 coordinates 
limit the exemplar size to 256×256, but that proves sufficient. 

2D Hash function.  One common approach to define a hash 
function is to fill a 1D texture table with random numbers, and 
apply successive permutations through this table using the input 
coordinates [e.g. Perlin 2002].  We adopt a similar approach, but 
with a 2D 16×16 texture, and with an affine transform between 
permutations to further shuffle the coordinates.  Note that the 
interaction of jitter across levels helps to hide imperfections of the 
hash function.  Because the hash function is only evaluated once 
per pixel during the jitter step, it is not a bottleneck – the correc-
tion pass is by far the bottleneck. 

GPU shader.  The correction shader executes 384 instructions, 
including 62 texture reads.  Because the 50×6 PCA matrix 𝑃6 
takes up 75 constant vector4 registers (50 is 5×5 pixels with 2D 
colors), we require shader model ps_3_0.  It may be possible to 
approximate the PCA bases using a smaller number of unique 
constants, to allow compilation under ps_2_a and ps_2_b. 

 



 

 

4. Synthesis control 
Our parallel multiresolution jitter enables a variety of controls. 

4.1 Multiscale randomness control 
The randomness parameters 𝑟𝑙 set the jitter amplitude at each 
level, and thus provide a form of “spectral variation control”.  We 
link these parameters to a set of sliders (Figure 1).  As demon-
strated on the accompanying video, the feedback of real-time 
evaluation lets the parameters be chosen easily and quickly for 
each exemplar.  Figure 8 shows some example results. 
Note that the introduction of coarse-scale jitter removes visible 
repetitive patterns at a large scale.  In contrast, texture tiling 
schemes behave poorly on non-homogeneous textures (e.g. with 
features like mountains) since the features then have “quantized” 
locations that are obvious when viewed from afar. 

   

   

   
Zero randomness Fine randomness Coarse randomness 

Figure 8: Examples of multiscale randomness control.  For the 
elevation map in the top row, note how fine-scale randomness 
alters the mountains in place, whereas coarse-scale randomness 
displaces identical copies.  (We shade the elevation map after 
synthesis for easier visualization.) 

4.2 Spatial modulation over source exemplar 
We can control the amount of randomness introduced in different 
parts of the exemplar by painting a randomness field 𝑅𝐸 above it.  
From 𝑅𝐸 we create a mipmap pyramid 𝑅𝐸𝑙[𝑢] where the mipmap 
rule is to assign each node the minimum randomness of its chil-
dren.  Then, jitter is modulated by the value of the randomness 
field 𝑅𝐸 at the current exemplar location: 

𝐽𝑙(𝑝) = �ℋ(𝑝) ℎ𝑙 𝑟𝑙 𝑅𝐸𝑙�𝑆𝑙[𝑝]� + �.5
.5
�� . 

We find that this spatial modulation is most useful for preserving 
the integrity of selected texture elements in nonstationary textures, 
as shown in Figure 9. 
The randomness field 𝑅𝐸 serves a purpose similar to that of the 
binary texton mask introduced by Zhang et al [2003].  One differ-
ence is that Zhang et al first synthesize the texton mask over a 

surface, and use it as a prior for subsequent color synthesis.  
Unfortunately, the larger neighborhoods necessary for good 
texton mask synthesis are currently an obstacle for real-time 
implementation; their results require tens of minutes of CPU time. 

 
Exemplar 𝐸 

 
Mask 𝑅𝐸 

  
Without modulation With modulation 

Figure 9: Synthesis using spatial modulation over exemplar. 

4.3 Spatial modulation over output 
The user can also paint a randomness field 𝑅𝑆 above the output 
image 𝑆 to spatially adjust texture variation over the synthesized 
range.  This may be used for instance to roughen a surface pattern 
in areas of wear or damage.  Given the painted image 𝑅𝑆, we let 
the hardware automatically create and access a mipmap pyramid 
𝑅𝑆𝑙[𝑝].  We modulate the jitter using: 

𝐽𝑙(𝑝) = �ℋ(𝑝) ℎ𝑙 𝑟𝑙 𝑅𝑆𝑙[𝑝] + �.5
.5
�� . 

Figure 1 and Figure 10 show examples of the resulting local 
irregularities. 

   
Without modulation Modulation 𝑅𝑆 With modulation 

 

Figure 10: Synthesis using spatial modulation over output space.  
Left shows small uniform randomness whereas right shows effect 
of user-specified spatial modulation 𝑅𝑆. 

4.4 Feature drag-and-drop 
Our most exciting control is the drag-and-drop interface, which 
locally overrides jitter to explicitly position texture features.  For 
example, the user can fine-tune the locations of buildings in a 
cityscape or relocate mountains in a terrain.  Also, decals can be 
instanced at particular locations, such as bullet impacts on a wall. 
The approach is to constrain the synthesized coordinates in a 
circular region of the output.  Let the circle have center 𝑝𝐹 and 
radius 𝑟𝐹 and let 𝑢𝐹 be the desired exemplar coordinate at 𝑝𝐹.  We 
then override 𝑆𝑙[𝑝] ≔ �𝑢𝐹 + (𝑝 − 𝑝𝐹)� mod 𝑚 if ‖𝑝 − 𝑝𝐹‖ < 𝑟𝐹.  
It is important to apply this constraint across many synthesis 
levels, so that the surrounding texture can best correct itself to 
merge seamlessly.  For added control and broader adaptation at 
coarser levels, we actually store two radii, an inner radius 𝑟𝑖 and 
an outer radius 𝑟𝑜, and interpolate the radius per-level using 
𝑟𝐹 = 𝑟𝑖 𝑙/𝐿 + 𝑟𝑜(𝐿 − 𝑙)/𝐿. 



 

 

The user selects the feature 𝑢𝐹 by dragging from either the exem-
plar domain or the current synthesized image, and the dragged 
pointer then interactively updates 𝑝𝐹 (Figure 11). 
The parameters 𝑢𝐹 , 𝑝𝐹 , 𝑟𝑖 , 𝑟𝑜 are stored in the square cells associat-
ed with a coarse image 𝐼𝐹 (at resolution 𝑙=1 in our system), 
similar to the tiled sprites in [Lefebvre and Neyret 2003].  Unlike 
texture sprites, our synthesized features merge seamlessly with the 
surrounding texture.  In addition, we can introduce feature varia-
tions by disabling the synthesis constraint at the finest levels. 
Our drag-and-drop framework is a restricted case of constrained 
synthesis, because the dragged feature must exist in the exemplar.  
On the other hand, drag-and-drop offers a number of benefits: the 
constraints are satisfied using multiscale coherence (resulting in 
nearly seamless blends with the surrounding texture); parallel 
synthesis allows arbitrary placement of multiple features; and, the 
feature positions are efficiently encoded in a sparse image. 
In our current implementation, dragged features cannot lie too 
close together since each cell of image 𝐼𝐹 can intersect at most one 
feature.  However, one could allow multiple features per cell, or 
use a denser, sparse image representation [Kraus and Ertl 2002]. 
Another limitation is that the default synthesized image generally 
contains random distributions of all features in the exemplar.  
Therefore, in creating the “2005” example of Figure 11, we 
needed to perform a few extra drag-and-drop operations to re-
move mountains already present.  A better approach would be to 
reserve areas of the exemplar for special “decal” features that 
should only appear when explicitly positioned. 

  

 

 
Figure 11: Examples of drag-and-drop interface and its results.  
The coarse 20×10 image 𝐼𝐹 encodes the mountain positions for 
the 1280×560 synthesized terrain, which is then magnified (as 
described in Section 5) to define a 19,000×8,300 landscape. 

   
Exemplars and ordinary jitter 

  

  

  
Quantized jitter Addition of fine-scale jitter 

Figure 12: Results of near-regular texture synthesis.  White 
circles indicate examples of newly formed tiles. 

4.5 Near-regular textures 
Some textures are near-regular [Liu et al 2004], in the sense that 
they deviate from periodic tilings in two ways: (1) their geometric 
structure may be only approximately periodic, and (2) their tiles 
may have irregular color.  Our synthesis scheme can be adapted to 
create such textures as follows. 
Given a near-regular texture image 𝐸′, we resample it onto an 
exemplar 𝐸 such that its lattice structure becomes (1) regular and 
(2) a subdivision of the unit square domain.  The first goal is 
achieved using the technique of [Liu et al 2004], which deter-
mines the two translation vectors representing the underlying 
translational lattice and warps 𝐸′ into a “straightened” lattice.  To 
satisfy the second goal, we select an 𝑛𝑥 × 𝑛𝑦 grid of lattice tiles 
bounded by a parallelogram and map it affinely 
to the unit square.  As an example, the first 
exemplar in Figure 12 is created from the inset 
image.  We can then treat the exemplar as being 
toroidal in our synthesis scheme. 
At runtime, we maintain tiling periodicity by quantizing each 
jitter coordinate as 

𝐽𝑙,𝑥′ (𝑝) = (𝑚/𝑛𝑥)�   𝐽𝑙,𝑥(𝑝)/(𝑚/𝑛𝑥) + .5 �   if   ℎ𝑙 ≥ (𝑚/𝑛𝑥) 

and similarly for 𝐽𝑙,𝑦(𝑝).  The quantization is disabled on the fine 
levels (where spacing ℎ𝑙 is small) to allow local geometric distor-
tion if desired.  During the analysis preprocess, we also constrain 
each similarity set 𝐶𝑙(𝑢) to the same quantized lattice (e.g. 
𝑢𝑥 + 𝑖(𝑚/𝑛𝑥) for integer 𝑖) on levels for which ℎ𝑙 ≥ (𝑚/𝑛𝑥). 
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Some results are presented in Figure 12.  The lattice parameters 
(𝑛𝑥 ,𝑛𝑦) are respectively (4,2), (2,2), and (2,1).  (The keyboard 
example is not (4,4) because the rows of keys are slightly offset.)  
Of course, the synthesized images can easily be transformed back 
to their original space using inverses of the affine maps.  Trans-
forming the synthesized coordinates avoids resampling. 
Our approach differs from that of Liu et al [2004; 2005] in several 
ways.  By directly synthesizing a deformation field, they accurate-
ly model geometric irregularities found in real textures, while our 
fine-scale jitter process is completely random.  They obtain color 
irregularity by iteratively selecting and stitching overlapping 
lattice tiles in scanline order, whereas our jitter process allows 
parallel synthesis.  Using mid-scale jitter, we can optionally 
combine portions of different tiles, as evident in the creation of 
new keys in Figure 12.  Finally, their tile selection depends on the 
choice of a lattice anchor point, whereas our synthesis process 
treats the exemplar domain in a truly toroidal fashion. 

5. Synthesis magnification 
Image super-resolution schemes [e.g. Freeman et al 2000; Hertz-
mann et al 2001] hallucinate image detail by learning from a set 
of low- and high-resolution color exemplars.  One key difference 
in texture synthesis schemes like ours is that each pixel of the 
output 𝑆𝐿 contains not just a color but also coordinates referring 
back to the source exemplar.  These coordinates effectively define 
a 2D parametric patch structure.  We next present synthesis 
magnification, a scheme for exploiting this 2D map to create 
higher-resolution images. 
Let the exemplar 𝐸=𝐸𝐿 be obtained as the downsampled version 
of some higher-resolution exemplar 𝐸𝐻.  The idea is to use the 
synthesized coordinates in 𝑆𝐿 to create a higher-resolution image 
by copying the same patch structure from 𝐸𝐻 (see Figure 13). 
Using this magnification, we can synthesize the patch structure at 
low resolution, and later amplify it with detail.  This lets us 
exceed the 2562 exemplar size limit in our GPU implementation.  
More importantly, synthesis magnification is such a simple 
algorithm that it can be embedded into the final surface pixel 
shader, and therefore does not involve any additional memory. 
The process is as follows.  Given texture coordinates 𝑝, we access 
the 4 nearest texels in the (low-resolution) synthesized image 𝑆𝐿.  
For each of the 4 texels, we compute the exemplar coordinates 
that point 𝑝 would have if it was contained in the same parametric 
patch, and we sample the high-resolution exemplar 𝐸𝐻 at those 
coordinates to obtain a color.  Finally, we bilinearly blend the 4 
colors according to the position of 𝑝 within the 4 texels. 
The procedure is best summarized with HLSL code: 

sampler SL = sampler_state { ... MagFilter=Point; }; 
float sizeSL, sizeEL; 
float ratio = sizeSL / sizeEL; 
 
float4 MagnifyTexture(float2 p : TEXCOORD0) : COLOR { 
 float2 pfrac = frac(p*sizeSL); 
 float4 colors[2][2]; 
 for (int i=0; i<2; i++) for (int j=0; j<2; j++) { 
  // Get patch coordinates at one of the 4 nearest samples. 
  float2 u = tex2D(SL, p + float2(i,j) / sizeSL); 
  // Extrapolate patch coordinates to current point p.  
  float2 uh = u + (pfrac - float2(i,j)) / sizeSL; 
  // Fetch color from the high-resolution exemplar. 
  colors[i][j] = tex2D(EH, uh, ddx(p*ratio), ddy(p*ratio)); 
 } 
 // Bilinearly blend the 4 colors. 
 return lerp(lerp(colors[0][0], colors[0][1], pfrac.y), 
             lerp(colors[1][0], colors[1][1], pfrac.y), 
            pfrac.x); 
} 

In the common case that 𝑝 lies in the interior of a patch, the 4 
computed colors are identical, and the reconstructed texture 
simply duplicates a cell of the high-resolution exemplar 𝐸𝐻.  If 
instead 𝑝 lies at the boundary between 2-4 patches, the bilinear 
blending nicely feathers the inter-patch seams. 
Even though the neighborhood matching used to create the low-
resolution image 𝑆𝐿 cannot anticipate how well higher-resolution 
features will match up at patch boundaries, the magnification 
approach is remarkably effective. 

   
Exemplar 𝐸𝐿 (1282) Synthesis 𝑆𝐿 (120×80) Exemplar 𝐸𝐻 (5122) 
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    𝐸𝐿  (642) 

    
    𝐸𝐻 (2562) 𝐸𝐿[𝑆𝐿]  (120×120) 𝐸𝐻[𝑆𝐿]  (480×480) 

Figure 13: Two examples of synthesis magnification. 

6. Additional results and discussion 
All our results are obtained on an NVIDIA GeForce 6800 Ultra 
using Microsoft DirectX 9.  CPU utilization is near zero.  We use 
similarity sets of size 𝑘=2, and 𝑐=2 correction passes, each with 
𝑠2=4 subpasses.  Exemplar sizes are 64×64 or 128×128. 
Synthesis quality.  As seen in Figure 14, our technique improves 
on the result of Wei and Levoy [2003] in terms of both synthesis 
quality and execution speed.  Also compared is the fast but order-
dependent method of Zelinka and Garland [2002]. 
Synthesis results on some 90 exemplars can be found on the Web 
at http://research.microsoft.com/projects/ParaTexSyn/.  Multiscale 
randomness was chosen manually per exemplar, requiring about 
an hour of interaction in total.  The examples show a default 
window position even though other windows may look better. 
The quality of our synthesis results is generally comparable to or 
better than previous neighborhood-matching schemes.  This is 
significant since previous schemes use broader neighborhoods and 
larger similarity sets while we use only a one-level 5×5 neighbor-
hood and 𝑘=2.  We believe several factors make this possible: (1) 
the increased coherence of the coordinate upsampling step, (2) the 
added neighborhood-matching opportunities of the Gaussian 
stack, and (3) the enhancement of subpass correction. 

http://research.microsoft.com/projects/ParaTexSyn/
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Figure 14: Comparison of synthesis quality and evaluation 
speed.  Images are 1922 in top row and 2882 in bottom row. 

Synthesis speed.  The following table lists GPU execution times 
for a 64×64 exemplar, both for full recomputation of all pyramid 
levels and for incremental update when panning the fine-level 
window at a speed of 1 pixel/frame in both 𝑋 and 𝑌.  The times 
are largely invariant to the particular texture content.  An added 
benefit of GPU evaluation is that the output is written directly into 
video memory, and we thus avoid the overhead of texture upload.  
Synthesis magnification processes 100-200 Mpixels/sec (depend-
ing on patch coherence), so we can synthesize a 320×240 window 
from scratch and magnify it to 1600×1200, all at 22 frames/sec. 

Window size 
Average synthesis times (msec) 

Full padded pyramid Incremental panning 
1282 13.8 1.3 
2562 25.6 1.4 
5122 72.4 2.1 

Preprocess.  The per-exemplar precomputation can be summa-
rized as follows.  We iteratively filter the exemplar image 𝐸 to 
form the Gaussian stack, and compute the PCA bases for both 
colors and neighborhoods.  We find the similarity sets 𝐶𝑙(𝑢) 
using an approximate nearest-neighbor search on 7×7 neighbor-
hoods [Arya et al 1998].  For each exemplar pixel, we store the 
PCA-projected neighborhoods of its two candidate set entries.  
The complete process takes about a minute on a 64×64 exemplar, 
and 4-12 minutes on a 128×128 exemplar. 

Representation compactness.  Let us examine memory require-
ments.  We omit the synthesis pyramid 𝑆𝑙[𝑝] since it is a 
temporary buffer.  The per-exemplar structures require: 

Structure Bytes 
Neighborhood PCA projection matrix 𝑃6 1200 
Gaussian image stack 𝐸𝑙[𝑢] 3𝑚2(log2𝑚 − 2) 

Projected neighborhood models 𝑁�𝐸𝑙(𝑢) 6𝑚2(log2𝑚 − 2) 
Similarity sets 𝐶1…𝑘=2

𝑙 (𝑢) 4𝑚2(log2𝑚 − 2) 

Total 1200 + 13𝑚2(log2𝑚 − 2) 

For a 64×64 exemplar, the total is 214KB.  Thus, the minimum 
texture size for which the synthesis-based representation is more 
compact than the final image is a 270×270 image.  For a 128×128 
exemplar, it is an 600×600 image.  We believe that there are 

several opportunities to lower this crossover point by compressing 
the representation.  In particular, all the structures have much less 
information at the coarser levels, as can be seen visually for 𝐸 in 
Figure 5.  This is an area for future investigation. 
Note that for storage, one need only keep 𝑃6, 𝐸𝐿, and 𝐶𝑙(𝑢) since 
the remaining structures can be rebuilt efficiently. 

Mipmapping.  To properly filter the synthesized texture 𝐸𝐿[𝑆𝐿] 
during rendering, one usually computes a mipmap pyramid 
through successive downsampling.  Because we are generating the 
texture at runtime, an alternative becomes relevant – that of using 
the intermediate-resolution synthesized images.  Of course, these 
are only approximations since they ignore subsequent jitter and 
correction, but we find that they are often adequate. 

𝐸0[𝑆0] …𝐸𝐿[𝑆𝐿] 

   

 
 

 

 

 

 

True mipmap of 𝐸𝐿[𝑆𝐿]  

 

 
 

 

 

 

 
When using synthesis magnification, we access a mipmap of the 
high-resolution exemplar 𝐸𝐻.  As shown in the code of Section 5, 
texture derivatives must be specified explicitly (ddx,ddy) to avoid 
erroneous (overly blurred) mipmap levels at patch boundaries. 

Toroidal synthesis.  If we want to create a toroidal image, we 
disable both the pyramid padding and the quadrant packing, and 
let the synthesized neighborhoods 𝑁𝑆𝑙  be evaluated toroidally.  
Alternatively, to retain the efficiency of quadrant packing, we 
perform synthesis using a padded pyramid as before, but redefine 
the jitter function to be periodic using 𝐽′(𝑝) = 𝐽(𝑝 mod 𝑛) where 
𝑛 is the size of the synthesized image.  Unlike in sequential per-
pixel algorithms, there are no special cases at the image bounda-
ries.  Here are two example results: 

  

On-demand synthesis.  Wei and Levoy [2003] synthesize texture 
on-the-fly as needed for each screen pixel.  In some sense this is 
an ideal solution, but the resulting irregular processing does not 
map efficiently onto current GPUs.  Our approach of synthesizing 
windows in texture space permits on-demand synthesis at coarser 
granularities such as per-tile, per-chart, or per-model.  For exam-
ple, several papers [e.g. Goss and Yuasa 1998; Tanner et al 1998] 
describe tile-based schemes that adaptively load texture as a 
function of changing view parameters, and these schemes could 
be adapted for texture synthesis.  More broadly, on-demand 
texture synthesis has parallels with the treatment of geometric 
level-of-detail, which is also adjusted in model space as opposed 
to per-pixel.  Our real-time framework will hopefully spur new 
research into the scheduling of on-demand data synthesis. 



 

 

Terrain synthesis.  Here is an example of terrain geometry 
created from the elevation map exemplar of Figure 8: 

 

Limitations.  We have referred to an “infinite” synthesized 
canvas.  There are of course numerical limits to its extent.  Fortu-
nately, GPUs now support 32-bit floats, so the 2D integer lattice 
of samples is well defined up to 224=16M samples on each axis 
(and synthesis magnification extends this limit further). 
The main weakness of our approach is the well-known drawback 
of neighborhood-based per-pixel synthesis: it performs poorly on 
textures with semantic structures not captured by small neighbor-
hoods.  Here are two examples; for the text we use quantized jitter 
to maintain line structure, but still get muddled characters. 

  

7. Summary and future work 
We have presented a parallel synthesis algorithm for creating 
infinite texture without the limited variety of tiles.  It is imple-
mented as a sequence of pixel shading passes on a GPU, and can 
synthesize a 2562 window of deterministic texture in 26 msec, or 
pan the window at over 700 frames/sec.  Using a new synthesis 
magnification technique, we can amplify this content to fill a 
1600×1200 screen in real time. 
Based on multiresolution jitter, our synthesis scheme is designed 
to reproduce tilings by default, so that one can control the scale 
and amplitude of statistical distortions applied to the texture.  We 
have explored a variety of controls that adapt the jitter both 
spectrally and spatially.  In this setting, parallel synthesis offers 
the nice property of local causality – local modifications have 
finite spatial effect. 
There are a number of avenues for future work: 
• Compress the Gaussian stack representation for improved data 

amplification. 
• Support composite textures (i.e. texture-by-numbers) [Hertz-

mann et al 2001; Zalesny et al 2005]. 
• Combine with geometry clipmaps for efficient terrain synthesis 

and rendering [Losasso and Hoppe 2004]. 
• Incorporate synthesis of vector shapes such as polygons, fonts, 

roads, and coastlines. 
• Automatically determine the best exemplar image and random-

ness parameters to visually approximate a given texture. 
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