

Parallel Controllable Texture Synthesis
Sylvain Lefebvre Hugues Hoppe

Microsoft Research

Exemplar

 Synthesized deterministic windows Multiscale randomness Spatial modulation Feature drag-and-drop

Figure 1: Given a small exemplar image, our parallel synthesis algorithm computes windows of spatially deterministic texture from an
infinite landscape in real-time. Synthesis variation is obtained using a novel jittering technique that enables several intuitive controls.

Abstract
We present a texture synthesis scheme based on neighborhood
matching, with contributions in two areas: parallelism and control.
Our scheme defines an infinite, deterministic, aperiodic texture,
from which windows can be computed in real-time on a GPU.
We attain high-quality synthesis using a new analysis structure
called the Gaussian stack, together with a coordinate upsampling
step and a subpass correction approach. Texture variation is
achieved by multiresolution jittering of exemplar coordinates.
Combined with the local support of parallel synthesis, the jitter
enables intuitive user controls including multiscale randomness,
spatial modulation over both exemplar and output, feature drag-
and-drop, and periodicity constraints. We also introduce synthe-
sis magnification, a fast method for amplifying coarse synthesis
results to higher resolution.
Keywords: runtime content synthesis, data amplification, Gaussian stack,
neighborhood matching, coordinate jitter, synthesis magnification.

1. Introduction
Sample-based texture synthesis analyzes a given exemplar to
create visually similar images. In graphics, these images often
contain surface attributes like colors and normals, as well as
displacement maps that define geometry itself. Our interest is in
applying synthesis to define infinite, aperiodic, deterministic
content from a compact representation. Such data amplification is
particularly beneficial in memory-constrained systems. Thanks to
growing processor parallelism, we can now envision sophisticated
techniques for on-demand content synthesis at runtime.
There are several approaches to sampled-based texture synthesis,
as reviewed in Section 2. While tiling methods are the fastest,
and patch optimization methods produce some of the best results,
neighborhood-matching algorithms allow greater fine-scale
adaptability during synthesis.
In this paper, we present a new neighborhood-matching method
with contributions in two areas: efficient parallel synthesis and
intuitive user control.

Parallel synthesis. Most neighborhood-matching synthesis
algorithms cannot support parallel evaluation because their
sequential assignment of output pixels involves long chains of
causal dependencies. For the purpose of creating large environ-
ments, such sequential algorithms have two shortcomings:
(1) It is impractical to define huge deterministic landscapes
because the entire image must be synthesized at one time, i.e. one
cannot incrementally compute just a window of it.
(2) The computation cannot be mapped efficiently onto a parallel
architecture like a GPU or multicore CPU.
Our method achieves parallelism by building on the order-
independent texture synthesis scheme of Wei and Levoy [2003].
They perform synthesis using a multiscale pyramid, applying
multiple passes of pixel correction at each pyramid level to match
neighborhoods of the exemplar [Popat and Picard 1993; Wei and
Levoy 2000]. Their crucial innovation is to perform correction on
all pixels independently, to allow deterministic synthesis of pixels
in arbitrary order. They investigate a texture synthesis cache for
on-demand per-pixel synthesis in rasterization and ray tracing.
We extend their approach in several directions. We improve
synthesis quality using three novel ideas:
• Gaussian image stack: During texture analysis, we (conceptu-

ally) capture Gaussian pyramids shifted at all locations of the
exemplar image, to boost synthesis variety.

• Coordinate upsampling: We initialize each pyramid level using
coordinate inheritance, to maintain patch coherence.

• Correction subpasses: We split each neighborhood-matching
pass into several subpasses to improve correction. Surprisingly,
the results surpass even a traditional sequential traversal.

Moreover, by evaluating texture windows rather than pixel que-
ries, we are able to cast synthesis as a parallel SIMD computation.
We adapt our scheme for efficient GPU evaluation using several
optimizations. Our system generates arbitrary windows of texture
from an infinite deterministic canvas in real-time – 2562 pixels in
26 msec. For continuous window motions, incremental computa-
tion provides further speedup.
User control. While many synthesis schemes offer some forms
of user guidance (as discussed in Section 2), they provide little
control over the amount of texture variability. Typically, output
variation is obtained by random seeding of boundary conditions.
As one modifies the random seeds or adjusts algorithmic parame-
ters, the synthesized result changes rather unpredictably.

We introduce an approach for more explicit, intuitive control.
The key principle is coordinate jitter – achieving variation solely
by perturbing exemplar coordinates at each level of the synthe-
sized pyramid. We initialize each level by simple coordinate
inheritance, so by design our scheme produces a tiling in the
absence of jitter. And, the tiles equal the exemplar if it is toroidal.
Starting with this simple but crucial result, randomness can be
gradually added at any resolution, for instance to displace the
macro-features in the texture, or to instead alter their fine detail.
We expose a set of continuous sliders that control the magnitude
of random jitter at each scale of synthesis (Figure 1). Because
parallel synthesis has local support, the output is quite coherent
with respect to continuous changes in jitter parameters, particular-
ly in conjunction with our new Gaussian image stack.
Multiresolution coordinate jitter also enables several forms of
local control. It lets randomness be adjusted spatially over the
source exemplar or over the output image. The jitter can also be
overridden to explicitly position features, through a convenient
drag-and-drop user interface. Thanks to the multiscale coherent
synthesis, the positioned features blend seamlessly with the
surrounding texture. Finally, the jittered coordinates can be
constrained to more faithfully reconstruct near-regular textures.
For all these control paradigms, real-time GPU evaluation pro-
vides invaluable feedback to the user.
Synthesis magnification. A common theme in our contributions
is that the primary operand of synthesis is exemplar coordinates
rather than color. As another contribution along these lines, we
introduce a fast technique for generating high-resolution textures.
The idea is to interpret the synthesized coordinates as a 2D patch
parametrization, and to use this map to efficiently sample a
higher-resolution exemplar. This magnification is performed in
the final surface shader and thus provides additional data amplifi-
cation with little memory cost.

2. Related work
There are a number of approaches for sampled-based synthesis.
Image Statistics. Texture can be synthesized by reproducing
joint statistics of the exemplar [e.g. Zalesny and Van Gool 2001].
Precomputed tiles. Cohen et al [2003] precompute a set of
Wang Tiles designed to abut seamlessly along their boundaries.
With a complete tile set, runtime evaluation is simple and parallel,
and is therefore achievable in the GPU pixel shader [Wei 2004].
Some coarse control is possible by transitioning between tiles of
different textures [Cohen et al 2003; Lefebvre and Neyret 2003].
The main drawback of tile-based textures is their limited variety
due to the fixed tile set. Also, the regular tiling structure may
become apparent when the texture is viewed from afar, especially
for non-homogeneous textures.
Patch optimization. Texture is created by iteratively overlapping
irregular patches of the exemplar [Praun et al 2000] to minimize
overlap error [Liang et al 2001]. Inter-patch boundaries are
improved using dynamic programming [Efros and Freeman 2001]
or graph cut [Kwatra et al 2003]. Patch layout is a nontrivial
optimization, and is therefore precomputed. The layout process
seems to be inherently sequential. Control is possible by letting
the user override the delineation and positioning of patches.
Neighborhood matching. The texture is typically generated one
pixel at a time in scanline or spiral order. For each pixel, the
partial neighborhood already synthesized is compared with
exemplar neighborhoods to identify the most likely pixels, and
one is chosen at random [Garber 1981; Efros and Leung 1999].
Improvements include hierarchical synthesis [Popat and Picard
1993], fast VQ matching [Wei and Levoy 2000], coherent synthe-

sis to favor patch formation [Ashikhmin 2001], and precomputed
similarity sets [Tong et al 2002; Zelinka and Garland 2002].
Very few neighborhood-matching schemes offer the potential for
synthesis parallelism. One is the early work of De Bonet [1997]
in which pyramid matching is based solely on ancestor coordi-
nates. The other is the order-independent approach of Wei and
Levoy [2003] which considers same-level neighbors in a multi-
pass neighborhood correction process.
One advantage of neighborhood-matching schemes is their flexi-
bility in fine-scale control. For instance, Ashikhmin [2001] lets
the user guide the process by initializing the output pixels with
desired colors. The image analogies framework of Hertzmann et
al [2001] uses a pair of auxiliary images to obtain many effects
including super-resolution, texture transfer, artistic filters, and
texture-by-numbers. Tonietto and Walter [2002] smoothly transi-
tion between scaled patches of a texture to locally control the
pattern scale. Zhang et al [2003] synthesize binary texton masks
to maintain integrity of texture elements, locally deform their
shapes, and transition between two homogeneous textures. Our
contribution is control over the magnitude of texture variability
(both spectrally and spatially), and our approach can be used in
conjunction with these other techniques.
For an incrementally moving window, one might consider filling
the exposed window region by applying existing constrained
synthesis schemes [e.g. Efros and Leung 1999; Liang et al 2001].
Note however that the resulting data then lacks spatial determin-
ism because it depends on the motion path of the window, unlike
in parallel synthesis.

3. Parallel synthesis method

3.1 Basic scheme
From an 𝑚×𝑚 exemplar image 𝐸, we synthesize an image 𝑆 in
which each pixel 𝑆[𝑝] stores the coordinates 𝑢 of an exemplar
pixel (where both 𝑝,𝑢 ∈ ℤ2). Thus, the color at pixel 𝑝 is given
by 𝐸[𝑢] = 𝐸�𝑆[𝑝]�.
Overview. As illustrated in Figure 2, we apply traditional hierar-
chical synthesis, creating an image pyramid 𝑆0, 𝑆1, … , (𝑆𝐿=𝑆) in
coarse-to-fine order, where 𝐿 = log2 𝑚.

Exemplar 𝐸 Coordinates 𝑢

𝑆0 𝑆1 … 𝑆𝐿

𝐸[𝑆0] 𝐸[𝑆1] 𝐸[𝑆𝐿]
Figure 2: Given an exemplar, we synthesize its coordinates into a
coarse-to-fine pyramid; the bottom row shows the corresponding
exemplar colors. As explained later in Section 3.4, deterministi-
cally evaluating the requested (yellow) pyramid requires a
broader pyramid padded with some indeterministic (hazy) pixels.

Upsample Jitter Correct Sl

E[Sl]
Sl+1

E[Sl+1]
Figure 3: The three steps of synthesis at each pyramid level.

For each pyramid level, we perform three steps (Figure 3): up-
sampling, jitter, and correction. As in [Wei and Levoy 2003], the
correction step consists of a sequence of passes, where within a
pass, each pixel is replaced independently by the exemplar pixel
whose neighborhood best matches the current synthesized neigh-
borhood. Here is pseudocode of the overall process:
Synthesize()
 𝑆−1 ≔ (0 0)𝑇 // Start with zero 2D coordinates.
 for 𝑙 ∈ {0 …𝐿} // Traverse levels coarse-to-fine.
 𝑆𝑙 ≔ Upsample(𝑆𝑙−1) // Upsample the coordinates.
 𝑆𝑙 ≔ Jitter(𝑆𝑙) // Perturb the coordinates.
 if (𝑙 > 2) // For all but three coarsest levels,
 for {1 … 𝑐} // apply several correction passes,
 𝑆𝑙 ≔ Correct(𝑆𝑙) // matching exemplar neighborhoods.
 return 𝑆𝐿

Previous hierarchical techniques represent the exemplar using a
Gaussian pyramid 𝐸0,𝐸1, … , (𝐸𝐿=𝐸). We first describe our
technique using this conventional approach, and in Section 3.2
modify it to use the new Gaussian stack structure. To simplify
the exposition, we let ℎ𝑙 denote the regular output spacing of
exemplar coordinates in level 𝑙: ℎ𝑙 = 1 for a pyramid and
ℎ𝑙 = 2𝐿−1 for a stack.
Upsampling. Rather than using a separate synthesis pass to
create the finer image from the next-coarser level, we simply
upsample the coordinates of the parent pixels. Specifically, we
assign to each of the four children the scaled parent coordinates
plus a child-dependent offset:

𝑆𝑙[2𝑝+Δ] ≔ (2𝑆𝑙–1[𝑝] + ℎ𝑙  Δ) mod 𝑚, Δ ∈ ��0
0� , �0

1� , �1
0� , �0

1�� .1

If the exemplar is toroidal and jitter is disabled, successive up-
samplings create the image 𝑆𝐿[𝑝] = 𝑝 mod 𝑚, which corresponds
to tiled copies of the exemplar 𝐸; the correction step then has no
effect because all neighborhoods of 𝑆𝐿 are present in 𝐸.
Jitter. To introduce spatially deterministic randomness, we
perturb the upsampled coordinates at each level by a jitter func-
tion, which is the product of a hash function ℋ:ℤ2 → [−1, +1]2
and a user-specified per-level randomness parameter 0 ≤ 𝑟𝑙 ≤ 1:

𝑆𝑙[𝑝] ≔ �𝑆𝑙[𝑝]+𝐽𝑙(𝑝)� mod 𝑚, where 𝐽𝑙(𝑝)= �ℎ𝑙  ℋ(𝑝) 𝑟𝑙+ �.5
.5
��.

Note that the output-spacing factor ℎ𝑙 reduces the jitter amplitude
at finer levels, as this is generally desirable. If the correction step
is turned off, the effect of jitter at each level looks like a quadtree
of translated windows in the final image:

Jitter at coarsest level… …Jitter at fine levels

1 We use “𝑢 mod 𝑚” and ⌊𝑢⌋ to denote per-coordinate operations.

Correction. The correction step takes the jittered coordinates and
alters them to recreate neighborhoods similar to those in the
exemplar. Because the output pixels cannot consider their simul-
taneously corrected neighbors, several passes of neighborhood
matching are necessary at each level to obtain good results. We
generally perform two correction passes.
For each pixel 𝑝, we gather the pixel colors of its 5×5 neighbor-
hood at the current level, represented as a vector 𝑁𝑆(𝑝). This
neighborhood is compared with exemplar neighborhoods 𝑁𝐸(𝑢)
to find the 𝐿2 best matching one.
To accelerate neighborhood matching, we use coherent synthesis
[Ashikhmin 2001], only considering those locations 𝑢 in the
exemplar given by the 3×3 immediate neighbors of 𝑝. To provide
additional variety, we use 𝑘-coherence search [Tong et al 2002],
precomputing for each exemplar pixel 𝑢 a candidate set 𝐶1…𝑘

𝑙 (𝑢)
of 𝑘 exemplar pixels with similar 7×7 neighborhoods. We set
𝑘=2. For good spatial distribution [Zelinka and Garland 2002],
we require the 𝑘 neighborhoods to be separated by at least 5% of
the image size. The first entry is usually the identity 𝐶1𝑙(𝑢)=𝑢.
We favor patch formation by penalizing jumps (𝐶2…𝑘

𝑙) using a
parameter 𝜅 as in [Hertzmann et al 2001].
These elements are captured more precisely by the expression

𝑆𝑙[𝑝] ≔ 𝐶𝑖min
𝑙 (𝑆𝑙[𝑝 + Δmin] − ℎ𝑙 Δmin) , where

𝑖min,Δmin = argmin
𝑖∈{1…𝑘}

�𝑁𝑆𝑙(𝑝) −𝑁𝐸𝑙 �𝐶𝑖
𝑙(𝑆𝑙[𝑝 + Δ] − ℎ𝑙Δ)��𝜑(𝑖)

Δ∈��–1

–1
�,�–1

0
�,…,�+1

+1
��

in which 𝜑(𝑖) = � 1, 𝑖 = 1
1 + 𝜅, 𝑖 > 1.

3.2 Gaussian image stack
For exemplar matching, the traditional approach is to construct a
Gaussian image pyramid 𝐸0,𝐸1, … , (𝐸𝐿=𝐸) with the same struc-
ture as the synthesis pyramid. However, we find that this often
results in synthesized features that align with a coarser “grid”
(Figure 6a) because ancestor coordinates in the synthesis pyramid
are snapped to the quantized positions of the exemplar pyramid.
One workaround would be to construct a few Gaussian pyramids
at different locations within the exemplar, similar to the multiple
sample pyramids used in [Bar-Joseph et al 2001].
Our continuous jitter framework has led us to a more general
solution, which is to allow synthesized coordinates 𝑢 to have fine
resolution at all levels of synthesis. Of course, we should then
analyze additional exemplar neighborhoods. Ideally, we desire a
full family of 𝑚2 Gaussian pyramids, one for each translation of
the exemplar image at its finest level. Fortunately, the samples of
all 𝑚2 exemplar pyramids actually correspond to a single stack of
log2 𝑚 images of size 𝑚×𝑚, which we call the Gaussian stack
(see illustration in Figure 4 and example in Figure 5).
To create the Gaussian stack, we augment the exemplar image on
all sides to have size 2𝑚×2𝑚. These additional image samples
come from one of three sources: an actual larger texture, a tiling if
the exemplar is toroidal, or else reflected copies of the exemplar.
We then apply traditional Gaussian filtering to form each coarser
level, but without subsampling.
To use the Gaussian stack in our synthesis scheme, the algorithm
from Section 3.1 is unchanged, except that we reassign ℎ𝑙 = 2𝐿−𝑙
and replace the upsampling step to account for the parent-child
relations of the stack:

𝑆𝑙[2𝑝 + Δ] ≔ �𝑆𝑙−1[𝑝] + �ℎ𝑙 �Δ − �.5
.5
���� mod 𝑚 .

If the exemplar is non-toroidal, synthesis artifacts occur when the
upsampled coordinates of four sibling pixels span a “mod 𝑚”
boundary. Our solution is to constrain the similarity sets such that
𝐶𝑖(⋅) ≠ 𝑢 for any pixel 𝑢 near the exemplar border (colored red in
Figure 4). The effect is that the synthesized texture is forced to
jump to another similar neighborhood away from the boundary.
At the coarsest level (𝑙=0), all Gaussian stack samples equal the
mean color of the exemplar image, so correction has no effect and
we therefore disable it. In practice, we find that correction at the
next two levels (𝑙=1,2) is overly restrictive as it tends to lock the
alignment of coarse features, so to allow greater control we
disable correction on those levels as well.
Figure 6b shows the improvement in synthesis quality due to the
stack structure. The effect is more pronounced during interactive
control as seen on the video.
The quadtree pyramid [Liang et al 2001] is a related structure that
stores the same samples but in a different order – an array of
smaller images at each level rather than a single image. Because
the quadtree samples are not spatially continuous with respect to
fine-scale offsets, jitter would require more complex addressing.

0 1 2 3 4 5 6 7
l=0

l=1

l=2

l=L

u =

Exemplar (m=8)
Gaussian Stack

(hl =4)

(hl =2)

(hl =1)
Figure 4: The Gaussian stack (shown here in 1D) is formed by a
union of pyramids shifted at all image locations. It is construct-
ed from an augmented exemplar image in the bottom row.

Level 0 Level 1 Level 2 Level 3 Level 4 Level 5

Figure 5: The Gaussian stack captures successively larger filter
kernels without the subsampling of Gaussian pyramids.

(a) Using a Gaussian pyramid (b) Using our Gaussian stack

Figure 6: Compared to a traditional Gaussian pyramid, the
Gaussian stack analysis structure leads to a more spatially uni-
form distribution of synthesized texture features.

3.3 Correction subpasses
When correcting all pixels simultaneously, one problem is that the
pixels are corrected according to neighborhoods that are also
changing. This may lead to slow convergence of pixel colors, or
even to cyclic behavior.
We improve results by partitioning a correction pass into a se-
quence of subpasses on subsets of nonadjacent pixels.
Specifically, we apply 𝑠2 subpasses, each one processing the
pixels 𝑝 such that 𝑝 mod 𝑠 = (𝑖 𝑗)𝑇, 𝑖, 𝑗 ∈ �0 … 𝑠–1�.

The evaluation order of the subpasses can be represented graph-
ically as an 𝑠×𝑠 matrix, shown here for 𝑠2=4:

Subpass 1
Subpass 2
Subpass 3
Subpass 4

represented as �1 2
3 4�.

There are a number of factors to consider in selecting the number
and order of the subpasses (see Figure 7):
• Synthesis quality improves with more subpasses, although not

much beyond 𝑠2=9.
• A traditional sequential algorithm is similar to a large number

of subpasses applied in scanline order. Interestingly, this yields
worse results. The intuitive explanation is that a scanline order
gives fewer opportunities to “go back and fix earlier mistakes”,
and consequently it is important to shuffle the subpass order.

• On the GPU, each subpass requires a SetRenderTarget() call,
which incurs a small cost.

• For spatially deterministic results (Section 3.4), each subpass
requires additional padding of the synthesis pyramid. For ex-
ample, this cost becomes evident at {𝑐=8,   𝑠2=4} in Figure 7.

• Even as neighborhood error decreases with many correction
passes, the texture may begin to look less like the exemplar,
because correction may have a bias to disproportionately use
subregions of the exemplar that join well together. For exam-
ple, in Figure 7 the “ripple” features become straighter.
Removing this bias is an interesting area for future work.

These factors present a tradeoff between performance and quality.
We find that using two correction passes and 𝑠2=4 subpasses
provides a good compromise. We select the following subpass
order to reduce the necessary pyramid padding:

�1 4
3 2� , �6 8

7 5� .

In practice, multiple subpasses result in a significant improvement
as demonstrated in Figure 7.

Full pass Multiple subpasses ~Sequential
𝑠2=1 𝑠2=4 𝑠2=9 (𝑠2 → ∞)

N
um

be
r o

f c
or

re
ct

io
n

pa
ss

es
 𝑐

1

 5.6 msec 6.7 msec — —

2

 9.6 msec 11.5 msec — —

8

 39 msec 80 msec — —

Figure 7: Effect of modifying the number of passes and sub-
passes. Note how {𝑐=1, 𝑠2=4} is nearly as good as {𝑐=2, 𝑠2=1}.
Exemplar is from Figure 1. Execution times are for full pyramid
synthesis of an 802 window. (𝑠2> 4 is emulated on the CPU.)

3.4 Spatially deterministic computation
As shown in [Wei and Levoy 2003], deterministic synthesis
requires that each correction pass start with a dilated domain that
includes the neighborhoods of all the desired corrected pixels.
For our case of synthesizing a deterministic texture window 𝑊𝑙 at
a level 𝑙, we must start with a larger window 𝑊𝑙

′ ⊃ 𝑊𝑙 such that
the correction of pixels in 𝑊𝑙 is influenced only by those in 𝑊𝑙

′.
Recall that we apply 𝑐=2 correction passes, each consisting of
𝑠2=4 subpasses. Because the correction of each pixel depends on
the previous state of pixels in its 5×5 neighborhood, i.e. at most 2
pixels away, the transitive closure of all dependencies in the
complete sequence of subpasses extends at most 2 𝑐 𝑠2=16 pixels.
Therefore, it is sufficient that window 𝑊𝑙

′ have a border padding
of 16 pixels on all sides of window 𝑊𝑙. In fact, for our specific
ordering of subpasses, this border only requires 10 and 11 pixels
on the left/right and top/bottom respectively.
The window 𝑊𝑙

′ is created by upsampling and jittering a smaller
(half-size) window 𝑊𝑙−1 at the next coarser level. The padding
process is thus repeated iteratively until reaching 𝑊0

′. Figure 2
shows the resulting padded pyramid, in which 𝑊𝑙

′ and 𝑊𝑙 are
identified by the outer boundaries and the non-hazy pixels respec-
tively. For comparison, the overlaid yellow squares show a
pyramid without padding. Table 1 lists the padded window sizes
required at each level to synthesize various windows.
When panning through a texture image, we maintain a prefetch
border of 16 pixels around the windows of all levels to reduce the
number of updates, and we incrementally compute just the two
strips of texture exposed at the boundaries. Timing results are
presented in Section 6.

Dim. of desired
window 𝑊𝐿=𝑊8

Dimension of padded window at each level
𝑊0

′ 𝑊1
′ 𝑊2

′ 𝑊3
′ 𝑊4

′ 𝑊5
′ 𝑊6

′ 𝑊7
′ 𝑊8

′
256 45 46 48 52 59 74 103 161 278

1 44 44 44 44 43 42 39 34 24
Table 1: Padded window sizes required for spatial determinism.

3.5 PCA projection of pixel neighborhoods
We reduce both memory and time by projecting pixel neighbor-
hoods into a lower-dimensional space. During a
preprocess on each exemplar and at each level, we
run principal component analysis (PCA) on the
neighborhoods 𝑁𝐸𝑙(𝑢), and project them as
𝑁�𝐸𝑙(𝑢) = 𝑃6 𝑁𝐸𝑙(𝑢) where matrix 𝑃6 contains the 6
largest principal components (see inset example).
The synthesis correction step then computes
𝑁�𝑆𝑙(𝑝) = 𝑃6 𝑁𝑆𝑙(𝑝) and evaluates neighborhood distance as the
6-dimensional distance �𝑁�𝑆𝑙(𝑝) − 𝑁�𝐸𝑙(⋅)�.

3.6 GPU implementation
We perform all three steps of texture synthesis using the GPU
rasterization pipeline. The upsampling and jitter steps are simple
enough that they are combined into a single rasterization pass.
The most challenging step is of course the correction step.
When implementing the correction algorithm on current GPUs,
we must forgo some opportunities for optimization. For instance,
the array of 18 candidate neighborhoods 𝐶𝑖𝑙(𝑆𝑙[𝑝 + Δ] − Δ) often
has many duplicates over the range of 𝑖 and Δ, and these dupli-
cates are usually culled in a CPU computation. While this culling
is currently infeasible on a GPU, the broad parallelism and effi-
cient texture caching still makes the brute-force approach
practical, particularly if we tune the algorithm as described next.

Quadrant packing. Each correction subpass must write to a set
of nonadjacent pixels, but current GPU pixel shaders do not
support efficient branching on such fine granularity. Thus, in a
straightforward implementation, each subpass would cost almost
as much as a full pass. Instead, we reorganize pixels according to
their “mod 𝑠” location. For 𝑠2=4, we store the image as

[0, 0] [0, 2] [0,1] [0,3]
[2, 0] [2, 2] [2,1] [2,3]

[1, 0] [1, 2] [1,1] [1,3]
[3, 0] [3, 2] [3,1] [3,3]

 
 
 
 
 
 

 
 

     

 
 

     

 , i.e.

,

so that each subpass corrects a small contiguous block of pixels –
a quadrant – while copying the remaining three quadrants. This
quadrant reorganization complicates the texture reads somewhat,
since the neighborhoods 𝑁𝑆𝑙(𝑝) are no longer strictly adjacent in
texture space. However, the read sequence still provides excellent
texture cache locality. The end result is that we can perform all
four correction subpasses in nearly the same time as one full pass
(Figure 7). The upsampling and jitter steps still execute efficient-
ly as a single pass on these quadrant-packed images.

Color caching. Gathering the neighborhood 𝑁𝑆𝑙(𝑝) requires
fetching the colors 𝐸𝑙�𝑆𝑙[𝑝 + ⋯]� of 25 pixels. We reduce each
color fetch from two texture lookups to one by caching color
along with the exemplar coordinate 𝑢 at each pixel. Thus, each
pixel 𝑆[𝑝] stores a tuple (𝑢,𝐸[𝑢]).

PCA projection of colors. Because the coordinates 𝑢 are 2D and
the colors 𝐸[𝑢] are 3D, tuple (𝑢,𝐸[𝑢]) would require 5 channels.
To make it fit into 4 channels, we project colors onto their top two
principal components (computed per exemplar). For most tex-
tures, neighborhood information is adequately captured in this 2D
subspace. In fact, Hertzmann et al [2001] observe that just 1D
luminance is often adequate.

Channel quantization. GPU parallelism demands a high ratio of
computation to bandwidth. We reduce bandwidth by packing all
precomputed and synthesized data into 8-bit/channel textures. We
quantize the 6 coefficients of 𝑁�𝐸(𝑢) using different scaling factors
to fully exploit the 8-bit range. We store the 𝑘=2 candidate sets
�𝐶1𝑙(𝑢),  𝐶2𝑙(𝑢)� and projected neighborhoods 𝑁�𝐸𝑙(𝑢) as an
RGBA and two RGB textures. Alternatively, for a 25% synthesis
speedup we store them as �𝐶1𝑙(𝑢),  𝑁�𝐸𝑙(𝐶1

𝑙(𝑢)),  𝐶2𝑙(𝑢),  𝑁�𝐸𝑙(𝐶2
𝑙(𝑢))�

into four RGBA textures. Note that byte-sized 𝑢𝑥,𝑢𝑦 coordinates
limit the exemplar size to 256×256, but that proves sufficient.

2D Hash function. One common approach to define a hash
function is to fill a 1D texture table with random numbers, and
apply successive permutations through this table using the input
coordinates [e.g. Perlin 2002]. We adopt a similar approach, but
with a 2D 16×16 texture, and with an affine transform between
permutations to further shuffle the coordinates. Note that the
interaction of jitter across levels helps to hide imperfections of the
hash function. Because the hash function is only evaluated once
per pixel during the jitter step, it is not a bottleneck – the correc-
tion pass is by far the bottleneck.

GPU shader. The correction shader executes 384 instructions,
including 62 texture reads. Because the 50×6 PCA matrix 𝑃6
takes up 75 constant vector4 registers (50 is 5×5 pixels with 2D
colors), we require shader model ps_3_0. It may be possible to
approximate the PCA bases using a smaller number of unique
constants, to allow compilation under ps_2_a and ps_2_b.

4. Synthesis control
Our parallel multiresolution jitter enables a variety of controls.

4.1 Multiscale randomness control
The randomness parameters 𝑟𝑙 set the jitter amplitude at each
level, and thus provide a form of “spectral variation control”. We
link these parameters to a set of sliders (Figure 1). As demon-
strated on the accompanying video, the feedback of real-time
evaluation lets the parameters be chosen easily and quickly for
each exemplar. Figure 8 shows some example results.
Note that the introduction of coarse-scale jitter removes visible
repetitive patterns at a large scale. In contrast, texture tiling
schemes behave poorly on non-homogeneous textures (e.g. with
features like mountains) since the features then have “quantized”
locations that are obvious when viewed from afar.

Zero randomness Fine randomness Coarse randomness

Figure 8: Examples of multiscale randomness control. For the
elevation map in the top row, note how fine-scale randomness
alters the mountains in place, whereas coarse-scale randomness
displaces identical copies. (We shade the elevation map after
synthesis for easier visualization.)

4.2 Spatial modulation over source exemplar
We can control the amount of randomness introduced in different
parts of the exemplar by painting a randomness field 𝑅𝐸 above it.
From 𝑅𝐸 we create a mipmap pyramid 𝑅𝐸𝑙[𝑢] where the mipmap
rule is to assign each node the minimum randomness of its chil-
dren. Then, jitter is modulated by the value of the randomness
field 𝑅𝐸 at the current exemplar location:

𝐽𝑙(𝑝) = �ℋ(𝑝) ℎ𝑙 𝑟𝑙 𝑅𝐸𝑙�𝑆𝑙[𝑝]� + �.5
.5
�� .

We find that this spatial modulation is most useful for preserving
the integrity of selected texture elements in nonstationary textures,
as shown in Figure 9.
The randomness field 𝑅𝐸 serves a purpose similar to that of the
binary texton mask introduced by Zhang et al [2003]. One differ-
ence is that Zhang et al first synthesize the texton mask over a

surface, and use it as a prior for subsequent color synthesis.
Unfortunately, the larger neighborhoods necessary for good
texton mask synthesis are currently an obstacle for real-time
implementation; their results require tens of minutes of CPU time.

Exemplar 𝐸

Mask 𝑅𝐸

Without modulation With modulation

Figure 9: Synthesis using spatial modulation over exemplar.

4.3 Spatial modulation over output
The user can also paint a randomness field 𝑅𝑆 above the output
image 𝑆 to spatially adjust texture variation over the synthesized
range. This may be used for instance to roughen a surface pattern
in areas of wear or damage. Given the painted image 𝑅𝑆, we let
the hardware automatically create and access a mipmap pyramid
𝑅𝑆𝑙[𝑝]. We modulate the jitter using:

𝐽𝑙(𝑝) = �ℋ(𝑝) ℎ𝑙 𝑟𝑙 𝑅𝑆𝑙[𝑝] + �.5
.5
�� .

Figure 1 and Figure 10 show examples of the resulting local
irregularities.

Without modulation Modulation 𝑅𝑆 With modulation

Figure 10: Synthesis using spatial modulation over output space.
Left shows small uniform randomness whereas right shows effect
of user-specified spatial modulation 𝑅𝑆.

4.4 Feature drag-and-drop
Our most exciting control is the drag-and-drop interface, which
locally overrides jitter to explicitly position texture features. For
example, the user can fine-tune the locations of buildings in a
cityscape or relocate mountains in a terrain. Also, decals can be
instanced at particular locations, such as bullet impacts on a wall.
The approach is to constrain the synthesized coordinates in a
circular region of the output. Let the circle have center 𝑝𝐹 and
radius 𝑟𝐹 and let 𝑢𝐹 be the desired exemplar coordinate at 𝑝𝐹. We
then override 𝑆𝑙[𝑝] ≔ �𝑢𝐹 + (𝑝 − 𝑝𝐹)� mod 𝑚 if ‖𝑝 − 𝑝𝐹‖ < 𝑟𝐹.
It is important to apply this constraint across many synthesis
levels, so that the surrounding texture can best correct itself to
merge seamlessly. For added control and broader adaptation at
coarser levels, we actually store two radii, an inner radius 𝑟𝑖 and
an outer radius 𝑟𝑜, and interpolate the radius per-level using
𝑟𝐹 = 𝑟𝑖 𝑙/𝐿 + 𝑟𝑜(𝐿 − 𝑙)/𝐿.

The user selects the feature 𝑢𝐹 by dragging from either the exem-
plar domain or the current synthesized image, and the dragged
pointer then interactively updates 𝑝𝐹 (Figure 11).
The parameters 𝑢𝐹 , 𝑝𝐹 , 𝑟𝑖 , 𝑟𝑜 are stored in the square cells associat-
ed with a coarse image 𝐼𝐹 (at resolution 𝑙=1 in our system),
similar to the tiled sprites in [Lefebvre and Neyret 2003]. Unlike
texture sprites, our synthesized features merge seamlessly with the
surrounding texture. In addition, we can introduce feature varia-
tions by disabling the synthesis constraint at the finest levels.
Our drag-and-drop framework is a restricted case of constrained
synthesis, because the dragged feature must exist in the exemplar.
On the other hand, drag-and-drop offers a number of benefits: the
constraints are satisfied using multiscale coherence (resulting in
nearly seamless blends with the surrounding texture); parallel
synthesis allows arbitrary placement of multiple features; and, the
feature positions are efficiently encoded in a sparse image.
In our current implementation, dragged features cannot lie too
close together since each cell of image 𝐼𝐹 can intersect at most one
feature. However, one could allow multiple features per cell, or
use a denser, sparse image representation [Kraus and Ertl 2002].
Another limitation is that the default synthesized image generally
contains random distributions of all features in the exemplar.
Therefore, in creating the “2005” example of Figure 11, we
needed to perform a few extra drag-and-drop operations to re-
move mountains already present. A better approach would be to
reserve areas of the exemplar for special “decal” features that
should only appear when explicitly positioned.

Figure 11: Examples of drag-and-drop interface and its results.
The coarse 20×10 image 𝐼𝐹 encodes the mountain positions for
the 1280×560 synthesized terrain, which is then magnified (as
described in Section 5) to define a 19,000×8,300 landscape.

Exemplars and ordinary jitter

Quantized jitter Addition of fine-scale jitter

Figure 12: Results of near-regular texture synthesis. White
circles indicate examples of newly formed tiles.

4.5 Near-regular textures
Some textures are near-regular [Liu et al 2004], in the sense that
they deviate from periodic tilings in two ways: (1) their geometric
structure may be only approximately periodic, and (2) their tiles
may have irregular color. Our synthesis scheme can be adapted to
create such textures as follows.
Given a near-regular texture image 𝐸′, we resample it onto an
exemplar 𝐸 such that its lattice structure becomes (1) regular and
(2) a subdivision of the unit square domain. The first goal is
achieved using the technique of [Liu et al 2004], which deter-
mines the two translation vectors representing the underlying
translational lattice and warps 𝐸′ into a “straightened” lattice. To
satisfy the second goal, we select an 𝑛𝑥 × 𝑛𝑦 grid of lattice tiles
bounded by a parallelogram and map it affinely
to the unit square. As an example, the first
exemplar in Figure 12 is created from the inset
image. We can then treat the exemplar as being
toroidal in our synthesis scheme.
At runtime, we maintain tiling periodicity by quantizing each
jitter coordinate as

𝐽𝑙,𝑥′ (𝑝) = (𝑚/𝑛𝑥)�   𝐽𝑙,𝑥(𝑝)/(𝑚/𝑛𝑥) + .5 � if ℎ𝑙 ≥ (𝑚/𝑛𝑥)

and similarly for 𝐽𝑙,𝑦(𝑝). The quantization is disabled on the fine
levels (where spacing ℎ𝑙 is small) to allow local geometric distor-
tion if desired. During the analysis preprocess, we also constrain
each similarity set 𝐶𝑙(𝑢) to the same quantized lattice (e.g.
𝑢𝑥 + 𝑖(𝑚/𝑛𝑥) for integer 𝑖) on levels for which ℎ𝑙 ≥ (𝑚/𝑛𝑥).

𝑟𝑖 𝑟𝑜

𝑢𝐹
𝑝𝐹

𝑝𝐹

𝐼𝐹

Some results are presented in Figure 12. The lattice parameters
(𝑛𝑥 ,𝑛𝑦) are respectively (4,2), (2,2), and (2,1). (The keyboard
example is not (4,4) because the rows of keys are slightly offset.)
Of course, the synthesized images can easily be transformed back
to their original space using inverses of the affine maps. Trans-
forming the synthesized coordinates avoids resampling.
Our approach differs from that of Liu et al [2004; 2005] in several
ways. By directly synthesizing a deformation field, they accurate-
ly model geometric irregularities found in real textures, while our
fine-scale jitter process is completely random. They obtain color
irregularity by iteratively selecting and stitching overlapping
lattice tiles in scanline order, whereas our jitter process allows
parallel synthesis. Using mid-scale jitter, we can optionally
combine portions of different tiles, as evident in the creation of
new keys in Figure 12. Finally, their tile selection depends on the
choice of a lattice anchor point, whereas our synthesis process
treats the exemplar domain in a truly toroidal fashion.

5. Synthesis magnification
Image super-resolution schemes [e.g. Freeman et al 2000; Hertz-
mann et al 2001] hallucinate image detail by learning from a set
of low- and high-resolution color exemplars. One key difference
in texture synthesis schemes like ours is that each pixel of the
output 𝑆𝐿 contains not just a color but also coordinates referring
back to the source exemplar. These coordinates effectively define
a 2D parametric patch structure. We next present synthesis
magnification, a scheme for exploiting this 2D map to create
higher-resolution images.
Let the exemplar 𝐸=𝐸𝐿 be obtained as the downsampled version
of some higher-resolution exemplar 𝐸𝐻. The idea is to use the
synthesized coordinates in 𝑆𝐿 to create a higher-resolution image
by copying the same patch structure from 𝐸𝐻 (see Figure 13).
Using this magnification, we can synthesize the patch structure at
low resolution, and later amplify it with detail. This lets us
exceed the 2562 exemplar size limit in our GPU implementation.
More importantly, synthesis magnification is such a simple
algorithm that it can be embedded into the final surface pixel
shader, and therefore does not involve any additional memory.
The process is as follows. Given texture coordinates 𝑝, we access
the 4 nearest texels in the (low-resolution) synthesized image 𝑆𝐿.
For each of the 4 texels, we compute the exemplar coordinates
that point 𝑝 would have if it was contained in the same parametric
patch, and we sample the high-resolution exemplar 𝐸𝐻 at those
coordinates to obtain a color. Finally, we bilinearly blend the 4
colors according to the position of 𝑝 within the 4 texels.
The procedure is best summarized with HLSL code:

sampler SL = sampler_state { ... MagFilter=Point; };
float sizeSL, sizeEL;
float ratio = sizeSL / sizeEL;

float4 MagnifyTexture(float2 p : TEXCOORD0) : COLOR {
 float2 pfrac = frac(p*sizeSL);
 float4 colors[2][2];
 for (int i=0; i<2; i++) for (int j=0; j<2; j++) {
 // Get patch coordinates at one of the 4 nearest samples.
 float2 u = tex2D(SL, p + float2(i,j) / sizeSL);
 // Extrapolate patch coordinates to current point p.
 float2 uh = u + (pfrac - float2(i,j)) / sizeSL;
 // Fetch color from the high-resolution exemplar.
 colors[i][j] = tex2D(EH, uh, ddx(p*ratio), ddy(p*ratio));
 }
 // Bilinearly blend the 4 colors.
 return lerp(lerp(colors[0][0], colors[0][1], pfrac.y),
 lerp(colors[1][0], colors[1][1], pfrac.y),
 pfrac.x);
}

In the common case that 𝑝 lies in the interior of a patch, the 4
computed colors are identical, and the reconstructed texture
simply duplicates a cell of the high-resolution exemplar 𝐸𝐻. If
instead 𝑝 lies at the boundary between 2-4 patches, the bilinear
blending nicely feathers the inter-patch seams.
Even though the neighborhood matching used to create the low-
resolution image 𝑆𝐿 cannot anticipate how well higher-resolution
features will match up at patch boundaries, the magnification
approach is remarkably effective.

Exemplar 𝐸𝐿 (1282) Synthesis 𝑆𝐿 (120×80) Exemplar 𝐸𝐻 (5122)

𝐸𝐿[𝑆𝐿] (120×80) 𝐸𝐻[𝑆𝐿] (480×320)

 𝐸𝐿 (642)

 𝐸𝐻 (2562) 𝐸𝐿[𝑆𝐿] (120×120) 𝐸𝐻[𝑆𝐿] (480×480)

Figure 13: Two examples of synthesis magnification.

6. Additional results and discussion
All our results are obtained on an NVIDIA GeForce 6800 Ultra
using Microsoft DirectX 9. CPU utilization is near zero. We use
similarity sets of size 𝑘=2, and 𝑐=2 correction passes, each with
𝑠2=4 subpasses. Exemplar sizes are 64×64 or 128×128.
Synthesis quality. As seen in Figure 14, our technique improves
on the result of Wei and Levoy [2003] in terms of both synthesis
quality and execution speed. Also compared is the fast but order-
dependent method of Zelinka and Garland [2002].
Synthesis results on some 90 exemplars can be found on the Web
at http://research.microsoft.com/projects/ParaTexSyn/. Multiscale
randomness was chosen manually per exemplar, requiring about
an hour of interaction in total. The examples show a default
window position even though other windows may look better.
The quality of our synthesis results is generally comparable to or
better than previous neighborhood-matching schemes. This is
significant since previous schemes use broader neighborhoods and
larger similarity sets while we use only a one-level 5×5 neighbor-
hood and 𝑘=2. We believe several factors make this possible: (1)
the increased coherence of the coordinate upsampling step, (2) the
added neighborhood-matching opportunities of the Gaussian
stack, and (3) the enhancement of subpass correction.

http://research.microsoft.com/projects/ParaTexSyn/

Wei and Levoy

[2003] 1.1GHz CPU
Zelinka and Garland
[2002] 1.0GHz CPU

Our technique
0.4GHz GPU

(642)

 3 sec ~45 msec 19 msec

(1922)

—

 4 sec 47 msec

Figure 14: Comparison of synthesis quality and evaluation
speed. Images are 1922 in top row and 2882 in bottom row.

Synthesis speed. The following table lists GPU execution times
for a 64×64 exemplar, both for full recomputation of all pyramid
levels and for incremental update when panning the fine-level
window at a speed of 1 pixel/frame in both 𝑋 and 𝑌. The times
are largely invariant to the particular texture content. An added
benefit of GPU evaluation is that the output is written directly into
video memory, and we thus avoid the overhead of texture upload.
Synthesis magnification processes 100-200 Mpixels/sec (depend-
ing on patch coherence), so we can synthesize a 320×240 window
from scratch and magnify it to 1600×1200, all at 22 frames/sec.

Window size
Average synthesis times (msec)

Full padded pyramid Incremental panning
1282 13.8 1.3
2562 25.6 1.4
5122 72.4 2.1

Preprocess. The per-exemplar precomputation can be summa-
rized as follows. We iteratively filter the exemplar image 𝐸 to
form the Gaussian stack, and compute the PCA bases for both
colors and neighborhoods. We find the similarity sets 𝐶𝑙(𝑢)
using an approximate nearest-neighbor search on 7×7 neighbor-
hoods [Arya et al 1998]. For each exemplar pixel, we store the
PCA-projected neighborhoods of its two candidate set entries.
The complete process takes about a minute on a 64×64 exemplar,
and 4-12 minutes on a 128×128 exemplar.

Representation compactness. Let us examine memory require-
ments. We omit the synthesis pyramid 𝑆𝑙[𝑝] since it is a
temporary buffer. The per-exemplar structures require:

Structure Bytes
Neighborhood PCA projection matrix 𝑃6 1200
Gaussian image stack 𝐸𝑙[𝑢] 3𝑚2(log2𝑚 − 2)

Projected neighborhood models 𝑁�𝐸𝑙(𝑢) 6𝑚2(log2𝑚 − 2)
Similarity sets 𝐶1…𝑘=2

𝑙 (𝑢) 4𝑚2(log2𝑚 − 2)

Total 1200 + 13𝑚2(log2𝑚 − 2)

For a 64×64 exemplar, the total is 214KB. Thus, the minimum
texture size for which the synthesis-based representation is more
compact than the final image is a 270×270 image. For a 128×128
exemplar, it is an 600×600 image. We believe that there are

several opportunities to lower this crossover point by compressing
the representation. In particular, all the structures have much less
information at the coarser levels, as can be seen visually for 𝐸 in
Figure 5. This is an area for future investigation.
Note that for storage, one need only keep 𝑃6, 𝐸𝐿, and 𝐶𝑙(𝑢) since
the remaining structures can be rebuilt efficiently.

Mipmapping. To properly filter the synthesized texture 𝐸𝐿[𝑆𝐿]
during rendering, one usually computes a mipmap pyramid
through successive downsampling. Because we are generating the
texture at runtime, an alternative becomes relevant – that of using
the intermediate-resolution synthesized images. Of course, these
are only approximations since they ignore subsequent jitter and
correction, but we find that they are often adequate.

𝐸0[𝑆0] …𝐸𝐿[𝑆𝐿]

True mipmap of 𝐸𝐿[𝑆𝐿]

When using synthesis magnification, we access a mipmap of the
high-resolution exemplar 𝐸𝐻. As shown in the code of Section 5,
texture derivatives must be specified explicitly (ddx,ddy) to avoid
erroneous (overly blurred) mipmap levels at patch boundaries.

Toroidal synthesis. If we want to create a toroidal image, we
disable both the pyramid padding and the quadrant packing, and
let the synthesized neighborhoods 𝑁𝑆𝑙 be evaluated toroidally.
Alternatively, to retain the efficiency of quadrant packing, we
perform synthesis using a padded pyramid as before, but redefine
the jitter function to be periodic using 𝐽′(𝑝) = 𝐽(𝑝 mod 𝑛) where
𝑛 is the size of the synthesized image. Unlike in sequential per-
pixel algorithms, there are no special cases at the image bounda-
ries. Here are two example results:

On-demand synthesis. Wei and Levoy [2003] synthesize texture
on-the-fly as needed for each screen pixel. In some sense this is
an ideal solution, but the resulting irregular processing does not
map efficiently onto current GPUs. Our approach of synthesizing
windows in texture space permits on-demand synthesis at coarser
granularities such as per-tile, per-chart, or per-model. For exam-
ple, several papers [e.g. Goss and Yuasa 1998; Tanner et al 1998]
describe tile-based schemes that adaptively load texture as a
function of changing view parameters, and these schemes could
be adapted for texture synthesis. More broadly, on-demand
texture synthesis has parallels with the treatment of geometric
level-of-detail, which is also adjusted in model space as opposed
to per-pixel. Our real-time framework will hopefully spur new
research into the scheduling of on-demand data synthesis.

Terrain synthesis. Here is an example of terrain geometry
created from the elevation map exemplar of Figure 8:

Limitations. We have referred to an “infinite” synthesized
canvas. There are of course numerical limits to its extent. Fortu-
nately, GPUs now support 32-bit floats, so the 2D integer lattice
of samples is well defined up to 224=16M samples on each axis
(and synthesis magnification extends this limit further).
The main weakness of our approach is the well-known drawback
of neighborhood-based per-pixel synthesis: it performs poorly on
textures with semantic structures not captured by small neighbor-
hoods. Here are two examples; for the text we use quantized jitter
to maintain line structure, but still get muddled characters.

7. Summary and future work
We have presented a parallel synthesis algorithm for creating
infinite texture without the limited variety of tiles. It is imple-
mented as a sequence of pixel shading passes on a GPU, and can
synthesize a 2562 window of deterministic texture in 26 msec, or
pan the window at over 700 frames/sec. Using a new synthesis
magnification technique, we can amplify this content to fill a
1600×1200 screen in real time.
Based on multiresolution jitter, our synthesis scheme is designed
to reproduce tilings by default, so that one can control the scale
and amplitude of statistical distortions applied to the texture. We
have explored a variety of controls that adapt the jitter both
spectrally and spatially. In this setting, parallel synthesis offers
the nice property of local causality – local modifications have
finite spatial effect.
There are a number of avenues for future work:
• Compress the Gaussian stack representation for improved data

amplification.
• Support composite textures (i.e. texture-by-numbers) [Hertz-

mann et al 2001; Zalesny et al 2005].
• Combine with geometry clipmaps for efficient terrain synthesis

and rendering [Losasso and Hoppe 2004].
• Incorporate synthesis of vector shapes such as polygons, fonts,

roads, and coastlines.
• Automatically determine the best exemplar image and random-

ness parameters to visually approximate a given texture.

References
ARYA, S., MOUNT, D., NETANYAHU, N., SILVERMAN, R., AND WU, A.

1998. An optimal algorithm for approximate nearest neighbor search-
ing in fixed dimensions. Journal of the ACM 45(6), 891-923.

ASHIKHMIN, M. 2001. Synthesizing natural textures. Symposium on
Interactive 3D Graphics, 217-226.

BAR-JOSEPH, Z., EL-YANIV, R., LISCHINSKI, D., AND WERMAN, M. 2001.
Texture mixing and texture movie synthesis using statistical learning.
IEEE TVCG 7(2), 120-135.

COHEN, M., SHADE, J., HILLER, S., AND DEUSSEN, O. 2003. Wang tiles
for image and texture generation. ACM SIGGRAPH, 287-294.

DE BONET, J. 1997. Multiresolution sampling procedure for analysis and
synthesis of texture images. ACM SIGGRAPH, 361-368.

EFROS, A., AND FREEMAN, W. 2001. Image quilting for texture synthesis
and transfer. ACM SIGGRAPH, 341-346.

EFROS, A., AND LEUNG, T. 1999. Texture synthesis by non-parametric
sampling. ICCV, 1033-1038.

FREEMAN, W., PASZTOR, E., AND CARMICHAEL, O. 2000. Learning low-
level vision. IJCV 40(1), 25-47.

GARBER, D. 1981. Computational models for texture analysis and texture
synthesis. PhD Dissertation, University of Southern California.

GOSS, M., AND YUASA, K. 1998. Texture tile visibility determination for
dynamic texture loading. Graphics Hardware, 55-60.

HERTZMANN, A., JACOBS, C., OLIVER, N., CURLESS, B., AND SALESIN, D.
2001. Image analogies. ACM SIGGRAPH, 327-340.

KRAUS, M., AND ERTL, T. 2002. Adaptive texture maps. Graphics
Hardware, 7-15.

KWATRA, V., SCHÖDL, A., ESSA, I., TURK, G., AND BOBICK, A. 2003.
Graphcut textures: image and video synthesis using graph cuts. ACM
SIGGRAPH, 277-286.

LEFEBVRE, S., AND NEYRET, F. 2003. Pattern based procedural textures.
Symposium on Interactive 3D Graphics, 203-212.

LIANG, L., LIU, C., XU, Y., GUO, B., AND SHUM, H.-Y. 2001. Real-time
texture synthesis by patch-based sampling. ACM TOG 20(3), 127-150.

LIU, Y., LIN, W.-C., AND HAYS, J. 2004. Near-regular texture analysis
and manipulation. ACM SIGGRAPH, 368-376.

LIU, Y., TSIN, Y., AND LIN, W.-C. 2005. The promise and perils of near-
regular texture. IJCV 62(1-2), 149-159.

LOSASSO, F., AND HOPPE, H. 2004. Geometry clipmaps: terrain rendering
using nested regular grids. ACM SIGGRAPH, 769-776.

PERLIN, K. 2002. Improving noise. ACM SIGGRAPH, 681-682.
POPAT, K., AND PICARD, R. 1993. Novel cluster-based probability model

for texture synthesis, classification, and compression. Visual Commu-
nications and Image Processing, 756-768.

PRAUN, E., FINKELSTEIN, A., AND HOPPE, H. 2000. Lapped textures.
ACM SIGGRAPH, 465-470.

TANNER, C., MIGDAL, C., AND JONES, M. 1998. The clipmap: A virtual
mipmap. ACM SIGGRAPH, 151-158.

TONG, X., ZHANG, J., LIU, L., WANG, X., GUO, B., AND SHUM, H.-Y..
2002. Synthesis of bidirectional texture functions on arbitrary surfac-
es. ACM SIGGRAPH, 665-672.

TONIETTO, L., AND WALTER, M. 2002. Towards local control for image-
based texture synthesis. In Proceedings of SIBGRAPI 2002 – XV Bra-
zilian Symposium on Computer Graphics and Image Processing.

WEI, L.-Y., AND LEVOY, M. 2000. Fast texture synthesis using tree-
structured vector quantization. ACM SIGGRAPH, 479-488.

WEI, L.-Y., AND LEVOY, M. 2003. Order-independent texture synthesis.
http://graphics.stanford.edu/papers/texture-synthesis-sig03/. (Earlier
version is Stanford University Computer Science TR-2002-01.)

WEI, L.-Y. 2004. Tile-based texture mapping on graphics hardware.
Graphics Hardware, 55-64.

ZALESNY, A., AND VAN GOOL, L. 2001. A compact model for viewpoint
dependent texture synthesis. In SMILE 2000: Workshop on 3D Struc-
ture from Images, 124-143.

ZALESNY, A., FERRARI, V., CAENEN, G., AND VAN GOOL, L. 2005.
Composite texture synthesis. IJCV 62(1-2), 161-176.

ZELINKA, S., AND GARLAND, M. 2002. Towards real-time texture
synthesis with the jump map. Eurographics Workshop on Rendering.

ZHANG, J., ZHOU, K., VELHO, L., GUO, B., AND SHUM, H.-Y. 2003.
Synthesis of progressively-variant textures on arbitrary surfaces. ACM
SIGGRAPH, 295-302.

	1. Introduction
	2. Related work
	3. Parallel synthesis method
	3.1 Basic scheme
	3.2 Gaussian image stack
	3.3 Correction subpasses
	3.4 Spatially deterministic computation
	3.5 PCA projection of pixel neighborhoods
	3.6 GPU implementation

	4. Synthesis control
	4.1 Multiscale randomness control
	4.2 Spatial modulation over source exemplar
	4.3 Spatial modulation over output
	4.4 Feature drag-and-drop
	4.5 Near-regular textures

	5. Synthesis magnification
	6. Additional results and discussion
	7. Summary and future work
	References

