
Discontinuity Edge Overdraw
Pedro V. Sander

Harvard University
http://cs.harvard.edu/~pvs

Hugues Hoppe
Microsoft Research

http://research.microsoft.com/~hoppe

John Snyder
Microsoft Research
johnsny@microsoft.com

Steven J. Gortler
Harvard University

http://cs.harvard.edu/~sjg

Abstract

Aliasing is an important problem when rendering triangle meshes.
Efficient antialiasing techniques such as mipmapping greatly
improve the filtering of textures defined over a mesh. A major
component of the remaining aliasing occurs along discontinuity
edges such as silhouettes, creases, and material boundaries.
Framebuffer supersampling is a simple remedy, but 2×2 super-
sampling leaves behind significant temporal artifacts, while
greater supersampling demands even more fill-rate and memory.
We present an alternative that focuses effort on discontinuity
edges by overdrawing such edges as antialiased lines. Although
the idea is simple, several subtleties arise. Visible silhouette
edges must be detected efficiently. Discontinuity edges need
consistent orientations. They must be blended as they approach
the silhouette to avoid popping. Unfortunately, edge blending
results in blurriness. Our technique balances these two competing
objectives of temporal smoothness and spatial sharpness. Finally,
the best results are obtained when discontinuity edges are sorted
by depth. Our approach proves surprisingly effective at reducing
temporal artifacts commonly referred to as "crawling jaggies",
with little added cost.
Additional Keywords: antialiasing, supersampling, triangle mesh render-
ing, antialiased line rendering.

1. Introduction
Computer graphics has long dealt with the issue of creating
discrete images without aliasing [7]. For the hardware-
accelerated triangle rendering pipeline, four forms of aliasing can
be identified:

• Aliasing within triangle interiors (undersampling of shading
function). One such example is aliasing due to texture under-
sampling, which can be efficiently handled using mipmaps [30]
or higher-quality anisotropic filtering. Other shading variations,
like pinpoint specular highlights, can exhibit high frequencies
that are more difficult to predict and bandlimit.

• Aliasing at triangle edges (appearance discontinuities [7]).
We categorize these discontinuity edges into silhouette edges
which limit the extent of the projected surface, and sharp edges
which mark shading discontinuities due to material boundaries
or discontinuities in material attributes like normals and colors.

• Aliasing among triangles (subpixel-sized triangles, also
known as the “small object” problem [7]). This problem is
partially helped by level-of-detail control. Robust solution re-
quires adequate supersampling or analytic antialiasing.

• Aliasing at triangle intersections (where one triangle passes
through another). Static intersections can be preprocessed to
yield explicit sharp edges using polyhedral CSG. Dynamic
intersections are difficult to antialias without supersampling.

(a) aliased original (b) overdrawn edges (c) final result

Figure 1: Reducing aliasing artifacts using edge overdraw.

With current graphics hardware, a simple technique for reducing
aliasing is to supersample and filter the output image. On current
displays (desktop screens of ~1K×1K resolution), 2×2 supersam-
pling reduces but does not eliminate aliasing. Of course, a finer
supersampling resolution further reduces aliasing but rapidly
becomes impractical.

One can implement 2×2 supersampling either by increasing the
framebuffer by a factor of 4, or by accumulating 4 subpixel-offset
images of the same scene for each frame [16]. Both approaches
are costly. The first requires 4 times the framebuffer memory and
4 times the fill-rate. The second requires 4 times the geometry
processing, 4 times the fill-rate, and the addition of an accumula-
tion buffer. The impact is that fill-rate-bound rendering becomes
up to 4 times slower, and memory capacity is consumed that
could otherwise be devoted to storing texture maps or caching
geometry.
Much of the aliasing in current hardware rendering occurs along
discontinuity edges. Perhaps most objectionable are the “crawling
jaggies” that appear near discontinuity edges as a model
moves [7]. Such artifacts are perceptible even at high display
resolutions where static spatial aliasing is less obvious, and are
observable even with 2×2 supersampling. Since discontinuity
edges typically cover only a small fraction of pixels, supersam-
pling every pixel seems a brute-force solution.
Our approach is to reduce aliasing artifacts along discontinuity
edges by overdrawing them as antialiased lines — a feature
commonly available in hardware. The z-buffer is used to resolve
visibility between the mesh triangles and the overdrawn edges.
The number of discontinuity edges is typically much smaller than
the number of triangles or pixels, so the overall frame time over-
head is small. For improved quality, the discontinuity edges
should be sorted, increasing this overhead marginally.
The result of edge overdraw differs from traditional antialiasing
methods like supersampling in that one side of each discontinuity
edge is “bloated” by a fraction of a pixel. However, the approach
succeeds in greatly reducing crawling jaggies and improving
rendering quality, as shown in Figure 1.

2. Previous work
Many general techniques to reduce aliasing have been used in
computer graphics, including uniform supersampling [9][16],
adaptive supersampling [32], analytic prefiltering [5][7][11][14]
[17][29], and stochastic sampling [6]. Like our approach, adap-
tive supersampling attempts to focus computation on troublesome
areas such as discontinuity edges. However, adaptive supersam-
pling is difficult to make robust and implement in hardware.
Prefiltering approaches bandlimit the continuous signal corre-
sponding to a geometric primitive (such as a constant-colored
polygon fragment), before actually point-sampling it. They
require expensive visibility determinations over areas rather than
points. Stochastic sampling methods convert aliasing to less
objectionable noise (rather than “jaggies”), but still require over-
sampling to acceptably reduce aliasing artifacts.
Coverage bitmask approaches [1][4][12][23][27][28] supersample
only coverage rather than full r,g,b,z samples. These are effective
at reducing artifacts at discontinuity edges but fail to eliminate
aliasing at triangle intersections, much like our scheme. Like
traditional uniform supersampling, they are brute-force solutions
since a coverage bitmask must be computed and stored at every
pixel (typically 16-32 extra bits). Moreover these schemes main-
tain a list of fragments projecting onto each pixel.
OpenGL offers a “polygon antialiasing” feature, available on
some high-end graphics workstations, that renders polygons with
antialiased boundaries [20]. It uses a special blending mode
(source_alpha_saturate) and only works when the polygons are
sorted front-to-back. A similar feature is also exposed in Micro-
soft’s DirectX API.
Another approach is to only antialias discontinuity edges.
Crow [7] proposes tagging discontinuity edges and antialiasing
them using prefiltering convolution in a scanline renderer.
Bloomenthal [3] infers discontinuity edges in an aliased image as
a postprocess. Pixels near discontinuities are then modified to
account for coverage of the inferred edges. This method gets
confused at texture discontinuities, ignores temporal aliasing, and
is likely too expensive to perform at interactive rates.
In silhouette clipping [25], a coarse mesh is clipped to the exact
silhouette of a detailed mesh using the stencil buffer. By transfer-
ring the stencil to the alpha buffer and redrawing silhouette edges
as antialiased lines, the external silhouette is antialiased. The
current paper borrows two ideas from this work: efficient runtime
silhouette extraction and rendering of antialiased lines. However,
we avoid using the stencil or alpha buffers, and reduce aliasing at
both internal and external silhouettes, and more generally all
discontinuity edges.
Sauer et al. [26] sketch a two-pass software rendering approach
for antialiasing silhouette edges. The second pass bloats fore-
ground pixels near silhouettes by computing edge coverage at
each pixel. Their method handles only silhouettes and detects
these by exhaustive search. Their paper lacks details on how
polygons are rasterized or how the two passes are composited.
Donovan [10] describes a hardware approach that transfers the
aliased framebuffer contents into texture memory, and uses this
texture to overdraw antialiased edges in a second pass.
Wimmer [31] describes an approach similar to ours in his
downloadable viewer (View3DX). He tries overdrawing antiali-
ased lines, but reports that his approach fails without software
sorting of all polygons. The DirectX documentation also men-
tions the use of edge overdraw to achieve antialiasing [18]:

Redrawing every edge in your scene can work without introducing
major artifacts, but it can be computationally expensive. In addi-
tion, it can be difficult to determine which edges should be
antialiased. The most important edges to redraw are those between
areas of very different color (for example, silhouette edges) or
boundaries between very different materials. Antialiasing the edge
between two polygons of roughly the same color will have no ef-
fect, yet is still computationally expensive.

In this paper we describe an edge overdraw approach that effec-
tively reduces aliasing by properly ordering the rendering and
using suitable z-buffer settings. We make the approach practical
by efficiently detecting and rendering just the discontinuity edges,
and introduce methods to maintain temporal smoothness, spatial
consistency, and spatial sharpness. We measure performance on a
suite of models and demonstrate the resulting quality.
Our method exploits existing hardware capable of rendering
antialiased lines, long a subject of computer graphics research
[2][8][13][15][19][21][33][34].

3. Approach
Our approach is to first render the triangle mesh (Figure 1a) and
then overdraw its discontinuity edges as antialiased lines (Figure
1b-c). In this section, we discuss issues related to rendering the
triangle mesh, determining the discontinuity edges, shading these
edges, and rendering them.

3.1 Rendering the triangle mesh
The model is rendered as a standard opaque triangle mesh. For
efficiency, it is specified as a display list of triangle strips. The
z-buffer is used to resolve occlusion, and is saved for use during
edge overdraw.

3.2 Determining the discontinuity edges
Recall that the overdrawn discontinuity edges are the union of
sharp edges (which mark shading discontinuities) and silhouette
edges (which limit the extent of the projected surface).
Because sharp edges demarcate shading discontinuities, this set of
edges is static. Therefore, they are collected during a preprocess,
and overdrawn at every frame. Fortunately, the number of sharp
edges is typically a small fraction of the total number of edges.
Silhouette edges are based on the viewpoint. An edge is a silhou-
ette edge if one of its adjacent faces is frontfacing and the other
backfacing. For many meshes, the average number of silhouette
edges per view is only ()nO , where n is the number of mesh
edges. So, typically only a small fraction of mesh edges needs to
be overdrawn as silhouette edges.
Collecting the silhouette edges can of course be done in a brute-
force manner by checking all mesh edges in ()nO time. To
accelerate this process, we use a fast silhouette extraction algo-
rithm whose average running time is proportional to the number
of output silhouette edges [24]. During a preprocess, the algo-
rithm constructs a search hierarchy in which nodes represent
clusters of mesh edges. Then, for a given viewpoint at runtime, it
traverses the hierarchy and is able to quickly skip entire subtrees
that contain no silhouette edges.
For a closed object, silhouette edges that are concave (having an
outer dihedral angle ≤ 180 degrees) are always occluded. There-
fore, such concave edges need not be entered into the search
structure. This typically reduces the number of edges in the
structure by 40%. Furthermore, since sharp edges are always

overdrawn, they too are omitted, resulting in an additional reduc-
tion of about 10%.

3.3 Shading the discontinuity edges
To shade each discontinuity edge, we use shading parameters
(e.g. normals, colors, textures, texture coordinates) taken from the
edge's neighboring faces, denoted the left and right faces. How
the shading parameters of the left and right face are combined
depends on the category of the discontinuity edge.
We first treat silhouette edges. The case of a non-sharp silhouette
edge is simple since the shading parameters of the two adjacent
faces agree. At a sharp silhouette edge, the shading parameters of
the two faces are different, and the edge must be shaded using the
parameters of the frontfacing adjacent face. Note that depending
on object orientation, a given sharp edge may appear on the
silhouette with either the left face frontfacing, or the right face
frontfacing.

(a) without edge blending

(b) with edge blending

Figure 2: Unless sharp edges are blended, they can approach the
silhouette with the wrong shading, resulting in popping as evi-
dent in (a) between the third and fourth panels as the darker top
line disappears.

Temporal smoothness: Sharp edge blending
The troublesome case is that of a sharp edge not on the silhouette.
To maintain temporal continuity, the edge must somehow
smoothly transition to the shading parameters of either the left
face or the right face as it approaches the silhouette. Otherwise,
abruptly switching the shading parameters from one face to the
other would result in a “popping” artifact (see Figure 2).
To solve this problem, for intermediate views where both adjacent
faces are frontfacing we shade the edge as a combination of the
two faces’ shading states. We compute a blend parameter β based
on the inner products of the viewing direction with the two adja-
cent face normals, via

V = eye – edge.midpoint
dotL = V · edge.leftFace.faceNormal
dotR = V · edge.rightFace.faceNormal
β = dotR / (dotL + dotR) .

Shading is then blended using
(1 - β) leftShading + (β) rightShading.

To achieve this blending, we have explored two alternate
schemes, blended-draw and double-draw. We will describe both.
Note that we prefer the second for its implementation simplicity.
Edge blended-draw. This scheme renders the edge once, as a
blended combination of the two shading functions. Ideally, the
blending is performed with post-shaded color values. For texture-
mapped meshes, this is achieved using hardware multitexturing to
blend the two adjacent textures. For Gouraud-shaded surfaces,
current hardware does not permit blending of post-shaded results
(without resorting to shading on the host CPU). Future hardware
supporting programmable shading will permit post-shaded blend-
ing. For now, we resort to interpolating the shading attributes
(e.g. normals and colors) prior to hardware shading. One draw-
back is that blending of normals can cause false highlights on
sharp crease edges.
Edge double-draw. This scheme renders the antialiased edge
twice, once using the shading function of the left face, and once
using that of the right face. An opacity value (alpha) is specified
for compositing each edge “over” the framebuffer. At least one of
the edge renderings must use alpha=1 to prevent the aliased
background pixels from showing through. Moreover, the back-
face shading must be attenuated to zero as the edge approaches
the silhouette, to avoid popping. If this backface shading edge is
the one drawn with alpha=1, there is no way to eliminate its
contribution by rendering the second antialiased line over it (due
to the antialiased line’s partial coverage). We therefore use a
simple order-switching algorithm. Specifically, if β < .5, we first
render with left face shading and alpha=1, followed by right face
shading and alpha=β. Otherwise, we first render with right face
shading and alpha=1, followed by left face shading with alpha=1-
β. Although this results in a slight discontinuity at the β = 0.5
transition, it is imperceptible in practice.
For blending, we prefer the edge double-draw scheme because it
does not require multitexturing and does not exhibit false high-
lights due to pre-shaded blending. All examples in the paper use
this double-draw scheme.

(a) symmetric blending (b) asymmetric blending

Figure 3: Simple symmetric blending blurs discontinuity edges.

Spatial sharpness: Asymmetric blending
Although blending is needed to avoid temporal popping, it tends
to blur the discontinuity edge (see Figure 3), because the shading
of the blended edge agrees with neither of the adjacent faces. To
compromise between the competing goals of temporal smoothness
and spatial sharpness, we adopt a hybrid approach that uses the
parameters from a single face (the left face) as much as possible,
while still avoiding objectionable pops.

We map β through the asymmetric transfer function

() () , otherwise ,
 if ,

1
0' τβ

ττββ ≤
⎩
⎨
⎧

−−=

and blend using the resulting β’. We
find that with τ set to 0.9, edge transi-
tion are still temporally smooth, but
the fraction of blended sharp edges
drops from about 30% to 2% on
average. In addition to restoring edge
sharpness and saving blending opera-
tions, asymmetric blending allows
most of the edge geometry to remain
the graphics card. We tried to exploit
sharp edges as a display list and then t
did not find any speedup.
Using asymmetric blending, a non-silho
drawn using the shading parameters of
drawback of shifting the proper materia
We find that this is less objectionable t
occurs when using symmetric blending

Spatial consistency: Sharp edge o
When referring earlier to the left/righ
sumed an edge orientation. If a shadin
several sharp edges along a path and th
in the path is selected independently, t
ing bias results in staggered-looking d
The solution is to orient discontinuity
simple preprocessing algorithm.
We first concatenate sharp edges togeth
precisely, two adjacent sharp edges are
their shared vertex has no other adjace
path, we assign an orientation to on
propagate this orientation along the enti
If each sharp path is oriented independ
tures appear non-uniform. For examp
4b appear larger than others. We re
global heuristic. We pick two arbitrar
as g1=(2,5,1) and g2=(2,1,-9). For eac
a representative edge as the one whose
the vector g1. We then assign the orie
on the sign of the dot product betwee
vector g2. Given this first edge orienta
along the sharp path as before. The res

(a) staggered

discontinuity edges
(b) per-path
orientation

Figure 4: Orienting discontinuity edge
Cessna, note that the windows have st
non-uniform sizes in (b).

3.4 Overdrawing the discontinuity edges
1

static, possibly cached on
 this by first rendering all
he few blended edges, but

uette sharp edge is usually
 the left face. This has the
l boundary by half a pixel.

han the extra softening that
 (Figure 3).

rientation
t faces of an edge, we as-
g discontinuity consists of
e orientation of each edge

hen the asymmetric blend-
iscontinuities (Figure 4a).
edges consistently using a

er into sharp paths. More
 placed in the same path if
nt sharp edges. For each
e edge, and then locally
re path.
ently, some regular struc-

le, some patches in Figure
solve this using a simple
y orthogonal vectors, such
h sharp path, we determine
 midpoint is farthest along
ntation of this edge based
n the edge vector and the
tion, we locally propagate

ult is shown in Figure 4c.

 (c) global heuristic

orientation

s. In this close-up of the
aggered edges in (a) and

0
0 1β

β′

Once shading parameters are determined, edges are rendered into
the framebuffer as antialiased lines. Alpha blending is configured
so that the lines are drawn using the “over” operation. The
z-buffer test is enabled to avoid drawing occluded edges. The
z-buffer write is disabled so that chains of antialiased edges do not
have gaps at the shared endpoints between individual edges.

Sorting Because the “over” operation is non-commutative, we
can occasionally get artifacts when silhouettes lie in front of other
discontinuity paths. As described next, we can solve this by
sorting the edges in back-to-front order prior to rendering them.
Of all sharp edges, only those on or near the silhouette1 can
occlude other discontinuity edges. Thus, only these need be
included in the sort along with the other silhouette edges. The
remaining sharp edges are simply drawn first.
We sort the edges according to the distance from the viewpoint to
the edge midpoint. Although this midpoint depth-sort heuristic
occasionally gives an incorrect sort, artifacts are rare and com-
prise only a few isolated pixels. By comparison, traditional back-
to-front polygon rendering requires correct occlusion-based
ordering since mistakes there are much more evident.
The sorting step incurs some cost, and is only necessary when
there are many discontinuity edge crossings. We therefore report
timings both with and without sorting, and demonstrate examples
of both on the video.

3.5 Review of final algorithm
Preprocess
 Collect sharp edges Sharp in scene;
 Assign consistent orientations to Sharp;
 Construct silhouette extraction tree (excluding sharp & concave);

Runtime (given viewpoint for each frame)
 Render scene;
 S = ∅; // set of discontinuity edges to sort
 for edge e in Sharp
 dleft = dot(e.fleft.normal , e.midpoint - viewpoint);
 dright = dot(e.fright.normal , e.midpoint - viewpoint);
 if dleft < 0 and dright < 0 then continue; // backfacing
 e.β = dright / (dleft + dright);
 if 0.1 < e.β < 0.9 then
 Render e with α = 1.0 using e.fleft shading;
 else
 S = S U {e};
 Extract silhouette edges Sil given viewpoint;
 S = S U Sil;
 Sort S in back-to-front order;
 for edge e in S
 if e ∈ Sil then
 Render e with α = 1.0 using e.ffront shading;
 else if e.β < 0.9 then
 Render e with α = 1.0 using e.fleft shading;
 else
 e.β’ = (e.β – 0.9) / (1.0 – 0.9);
 if e.β’ < 0.5 then
 Render e with α = 1.0 using e.fleft shading;
 Render e with α = e.β’ using e.fright shading;
 else
 Render e with α = 1.0 using e.fright shading;
 Render e with α = 1.0 – e.β’ using e.fleft shading;

1An edge is declared to be near the silhouette if it has β < 0.1 or β > 0.9 .

4. Implementation and results
Our software is written using OpenGL. It has been implemented
and tested on a Pentium III 800MHz PC with an NVIDIA Ge-
Force2 graphics card. (We have also verified that the method
works on an SGI Octane.)

Implementation details. We use glEnable(GL_POLYGON_
OFFSET_FILL) to perturb z-buffer values of triangles behind
those of lines. This is necessary so that antialiased lines pass the
z-buffer test to cover the jaggies. For edges adjacent to triangles
with high depth slope, we sometimes observe remaining aliasing
artifacts, suggesting that the glPolygonOffset() feature is not
pushing the triangles back sufficiently. The presence of these
artifacts varies with the particular graphics hardware.

For efficiency, we only enable GL_BLEND for rendering lines.
The lines are rendered using the default glLineWidth(1.0f).

When edge sorting is enabled, we use qsort(). A faster algo-
rithm like bucket sort could further improve the timing results
when rendering high-resolution models.
Results. We tested our system on six models. The preprocessing
bottleneck is the creation of the silhouette tree, which is currently
unoptimized and can take several minutes on large models.
Collecting the sharp edges and assigning them consistent orienta-
tions takes only a few seconds.
Runtime results are shown in Table 1. Note that the extracted
silhouette edges do not include silhouette edges that are sharp or
concave. Rendered edges excludes backfacing sharp edges. The
ship example has a higher performance overhead because it is
geometry-bound and has a high number of discontinuity edges.

Model man plane stoneh dino ship
Faces 1,586 8,000 1,380 43,866 85,068
Edges 2,379 12,000 2,070 65,799 127,602
Sharp edges 354 2,085 1,250 900 19,769

Edge statistics averaged over 100 viewpoints
Extracted sil. edges 94 393 22 365 7,122
Rendered edges 373 1,727 952 1,894 21,980
Sorted edges 309 1,212 661 1,240 16,448
Blended edges 6 23 10 23 266

Rendering time per frame (in milliseconds)
No edge overdraw 7.2 9.8 9.6 18.9 40.1
Unsorted edge overdraw 7.7 10.3 10.7 20.0 88.4
Sorted edge overdraw 7.7 10.8 10.7 23.3 121.2

Table 1: Results.

Figure 6 compares traditional aliased rendering, our approach, and
2x2 supersampling. Note that edge overdraw achieves better
results than supersampling at edges that are nearly vertical or
horizontal. The difference between sorted and unsorted edge
overdraw is slight, but is most visible in the second row. The
effect of sorting is more prominent in animations (rather than still
images), where it reduces some temporal aliasing artifacts. The
texture-mapped cube demonstrates the behavior at boundaries
between textures.
Figure 7 demonstrates our technique on more complex meshes,
using unsorted edge overdraw. The strongest benefit of our
approach is its ability to reduce temporal aliasing artifacts, com-
monly referred to as “crawling jaggies”. Unfortunately this
cannot be conveyed using static images, so please refer to the
accompanying video.

5. Discussion
Surface boundaries. Our scheme easily generalizes to the case
of meshes with boundaries. A boundary edge can be thought of as
a smooth edge with an outer dihedral angle of 360 degrees. Thus
it is reported as a silhouette edge for all viewpoints. Obviously,
the edge is shaded using the attributes of its one adjacent face.
With surface boundaries, however, the mesh interior may become
visible, so some of our optimizations must be disabled. Concave
edges can no longer be omitted from the silhouette search struc-
ture, and sharp edges must be drawn even if they are backfacing.
Bloating. Overdrawing edges with antialiased lines extends
triangles by a fraction of a pixel along discontinuities (Figure 5).
At silhouette edges, this essentially enlarges the foreground object
slightly at the expense of the background. This is necessary since
the framebuffer lacks information about what lies behind the
foreground object at partially covered pixels drawn in the fore-
ground.
For non-silhouette sharp edges, we do have simultaneous shading
information for both adjacent faces. Therefore, it should be
possible to produce a reasonably antialiased result, given an
appropriate but currently unavailable “antialiased double line”
hardware primitive.

(a) original aliased (b) 2×2 supersampled (c) edge overdrawn

Figure 5: Comparison of antialiasing at a discontinuity edge.
Note that hardware-antialiased edge overdraw often achieves
smoother edge filtering than simple 2x2 supersampling.

Bloating is most evident on small features such as thin cylinders,
which appear wider and with darker silhouettes. The effect can be
reduced through level-of-detail techniques that approximate small
geometric features using lines and points [22][24].
Per-object overdraw. For a scene with many objects, edges can
be overdrawn after all objects are rendered. Alternatively, edge
overdraw can be applied after the rendering of each object. In that
case, the objects must be rendered in back-to-front order if one
desires correct behavior at object silhouettes.

6. Summary and future work
We describe edge overdraw, an effective method for reducing
discontinuity edge artifacts for use in z-buffer hardware rendering.
For typical models having a small proportion of discontinuity
edges, edge overdraw can be performed with little added cost.
While the method is designed for spatial antialiasing, its most
striking benefit is the reduction of “crawling jaggies” as demon-
strated on the video.
Future work includes finding efficient methods for extracting
silhouettes from dynamic meshes, such as view-dependent level-
of-detail representations and animated shapes. To solve the
“small object” aliasing problem, LOD methods that utilize line
and point primitives [22][24] may prove useful.

References [18] MICROSOFT. DirectX SDK Documentation. http://msdn.
microsoft.com/library/psdk/directx/imover_0lk4.htm.

[1] ABRAM, G., WESTOVER, L., AND WHITTED, T. Efficient alias-
free rendering using bit-masks and look-up tables. SIG-
GRAPH 1985, pp. 53-60.

[19] NAIMAN, A. Jagged edges: when is antialiasing needed?
TOG, Oct. 1998.

[20] NEIDER, J., DAVIS, T., AND WOO, M. OpenGL programming
guide. Addison-Wesley, 1993.

[2] BARKANS, A. High speed high quality antialiased vector
generation. SIGGRAPH 1990, pp. 319-326.

[21] PITTEWAY, M, AND WATKINSON, D. Bresenham’s algorithm
with grey scale. Communications of the ACM, 23(11), No-
vember 1980.

[3] BLOOMENTHAL, J. Edge inference with applications to an-
tialiasing. SIGGRAPH 1983, pp. 157-162.

[4] CARPENTER, L. The A-buffer, an antialiased hidden surface
method. SIGGRAPH 1984, pp. 103-108. [22] POPOVIC, J., AND HOPPE, H. Progressive simplicial complexes.

SIGGRAPH 1997, pp. 217-224.
[5] CATMULL, E. A hidden-surface algorithm with antialiasing.

Computer Graphics 12(3), January 1980, pp. 23-34. [23] RIVARD, B., WINNER, S., KELLEY, M., PEASE, B., AND YEN, A.
Hardware accelerated rendering of antialiasing using a modi-
fied a-buffer algorithm. SIGGRAPH 1997, pp. 307-316. [6] COOK, R., PORTER, T., AND CARPENTER, L. Distributed ray

tracing. SIGGRAPH 1984, pp. 137-145.
[24] ROSSIGNAC, B., AND BORREL, P. Multi-resolution 3D ap-

proximations for rendering complex scenes. In Modeling in
Computer Graphics, B. Falcidieno and T.L. Kunii, Eds.
Springer-Verlag, 1993, pp. 455-465.

[7] CROW, F.C. The aliasing problem in computer generated
images. Communications of the ACM, v. 20, November,
1977.

[8] CROW, F.C. The use of grayscale for improved raster display
of vectors and characters. SIGGRAPH 1980, pp. 1-5.

[25] SANDER, P., GU, X., GORTLER, S., HOPPE, H., AND SNYDER, J.
Silhouette clipping. SIGGRAPH 2000, pp. 327-334.

[9] CROW, F.C. A comparison of antialiasing techniques. IEEE
Computer Graphics and Applications, v. 1, January, 1981.

[26] SAUER, F., MASCLEF, O., ROBERT, Y., AND DELTOUR, P.
Outcast: programming towards a design aesthetic. 1999
Game Developers Conference, pp. 811-827. (Also available
at http://www.appeal.be/products/page1/Outcast_GDC/outcast
_gdc_7.htm.)

[10] DONOVAN, W. Method and apparatus for performing post-
process antialiasing of polygon edges. U.S. Patent 6,005,580,
December 1999.

[27] SCHILLING, A. A new, simple, and efficient antialiasing with
subpixel masks. SIGGRAPH 1991, pp. 133-142. [11] FEIBUSH, E., LEVOY, M., AND COOK, R. Synthetic texturing

using digital filters. SIGGRAPH 1980, pp. 294-301.
[28] TORBORG, J., AND KAJIYA, J., Talisman: Commodity realtime

3D graphics for the PC, SIGGRAPH 1996, pp. 353-364. [12] FIUME, E., FOURNIER, A., AND RUDOLF, L. A parallel scan
conversion algorithm with anti-aliasing for a general-purpose
ultracomputer. SIGGRAPH 1983, pp. 141-150. [29] TURKOWSKI, K. Antialiasing through the use of coordinate

transformations. ACM Transactions on Graphics, 1(3), July
1982, pp. 215-234. [13] FUCHS, H., AND BARROS, J. Efficient generation of smooth

line drawings on video displays. Computer Graphics 13(2),
August 1979, pp. 260-269. [30] WILLIAMS, L.J. Pyramidal parametrics. SIGGRAPH 1983,

pp. 1-12.
[14] GUENTER, B., AND TUMBLIN, J. Quadrature prefiltering for

high quality antialiasing. ACM Transactions on Graphics,
October 1996.

[31] WIMMER, M. View3DX software, 1997. http://www.cg.
tuwien.ac.at/~wimmer/view3dx .

[15] GUPTA, S., AND SPROULL, R.F. Filtering edges for gray-scale
displays. Computer Graphics, 15(3), August 1981, pp.1-5.

[32] WHITTED, T. An improved illumination model for shaded
display. Communications of the ACM, v.23, June, 1980.

[16] HAEBERLI, P., AND AKELEY, K. The accumulation buffer:
hardware support for high-quality rendering. SIGGRAPH
1990, pp. 309-318.

[33] WHITTED, T. Antialiased line drawing using brush extension.
SIGGRAPH 1983, pp. 151-156.

[34] WU, X. An efficient antialiasing technique. SIGGRAPH
1991, pp. 143-152. [17] MCCOOL, M. Analytic antialiasing with prism splines.

SIGGRAPH 1995, pp. 429-436.

(a) original aliased mesh (b) with unsorted edge overdraw (c) with sorted edge overdraw (d) 2x2 supersampling

Figure 6: Edge overdraw results. Images (a-c) are rendered at 100x100 resolution, while (d) is rendered at 200x200 and averaged down.

Discontinuity Edge Overdraw (Pedro Sander, Hugues Hoppe, John Snyder, and Steven Gortler)

(a) original aliased mesh (b) with unsorted edge overdraw

Figure 7: Results of edge overdraw on more complex meshes, at 200x200 resolution.

	Introduction
	Previous work
	Approach
	Rendering the triangle mesh
	Determining the discontinuity edges
	Shading the discontinuity edges
	Overdrawing the discontinuity edges
	Review of final algorithm

	Implementation and results
	Discussion
	Summary and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

