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Abstract 

Aliasing is an important problem when rendering triangle meshes.  
Efficient antialiasing techniques such as mipmapping greatly 
improve the filtering of textures defined over a mesh.  A  major 
component of the remaining aliasing occurs along discontinuity 
edges such as silhouettes, creases, and material boundaries.  
Framebuffer supersampling is a simple remedy, but 2×2 super-
sampling leaves behind significant temporal artifacts, while 
greater supersampling demands even more fill-rate and memory.  
We present an alternative that focuses effort on discontinuity 
edges by overdrawing such edges as antialiased lines.  Although 
the idea is simple, several subtleties arise.  Visible silhouette 
edges must be detected efficiently.  Discontinuity edges need 
consistent orientations.  They must be blended as they approach 
the silhouette to avoid popping.  Unfortunately, edge blending 
results in blurriness.  Our technique balances these two competing 
objectives of temporal smoothness and spatial sharpness.  Finally, 
the best results are obtained when discontinuity edges are sorted 
by depth.  Our approach proves surprisingly effective at reducing 
temporal artifacts commonly referred to as "crawling jaggies", 
with little added cost. 
Additional Keywords: antialiasing, supersampling, triangle mesh render-
ing, antialiased line rendering. 

1. Introduction 
Computer graphics has long dealt with the issue of creating 
discrete images without aliasing [7].  For the hardware-
accelerated triangle rendering pipeline, four forms of aliasing can 
be identified: 

• Aliasing within triangle interiors (undersampling of shading 
function).  One such example is aliasing due to texture under-
sampling, which can be efficiently handled using mipmaps [30] 
or higher-quality anisotropic filtering.  Other shading variations, 
like pinpoint specular highlights, can exhibit high frequencies 
that are more difficult to predict and bandlimit. 

• Aliasing at triangle edges (appearance discontinuities [7]).  
We categorize these discontinuity edges into silhouette edges 
which limit the extent of the projected surface, and sharp edges 
which mark shading discontinuities due to material boundaries 
or discontinuities in material attributes like normals and colors. 

• Aliasing among triangles (subpixel-sized triangles, also 
known as the “small object” problem [7]).   This problem is 
partially helped by level-of-detail control.  Robust solution re-
quires adequate supersampling or analytic antialiasing. 

• Aliasing at triangle intersections (where one triangle passes 
through another).  Static intersections can be preprocessed to 
yield explicit sharp edges using polyhedral CSG.  Dynamic 
intersections are difficult to antialias without supersampling. 

 
(a) aliased original (b) overdrawn edges (c) final result 

Figure 1: Reducing aliasing artifacts using edge overdraw. 

With current graphics hardware, a simple technique for reducing 
aliasing is to supersample and filter the output image.  On current 
displays (desktop screens of ~1K×1K resolution), 2×2 supersam-
pling reduces but does not eliminate aliasing.  Of course, a finer 
supersampling resolution further reduces aliasing but rapidly 
becomes impractical. 

One can implement 2×2 supersampling either by increasing the 
framebuffer by a factor of 4, or by accumulating 4 subpixel-offset 
images of the same scene for each frame [16].  Both approaches 
are costly.  The first requires 4 times the framebuffer memory and 
4 times the fill-rate.  The second requires 4 times the geometry 
processing, 4 times the fill-rate, and the addition of an accumula-
tion buffer.  The impact is that fill-rate-bound rendering becomes 
up to 4 times slower, and memory capacity is consumed that 
could otherwise be devoted to storing texture maps or caching 
geometry. 
Much of the aliasing in current hardware rendering occurs along 
discontinuity edges.  Perhaps most objectionable are the “crawling 
jaggies” that appear near discontinuity edges as a model 
moves [7].  Such artifacts are perceptible even at high display 
resolutions where static spatial aliasing is less obvious, and are 
observable even with 2×2 supersampling.  Since discontinuity 
edges typically cover only a small fraction of pixels, supersam-
pling every pixel seems a brute-force solution. 
Our approach is to reduce aliasing artifacts along discontinuity 
edges by overdrawing them as antialiased lines — a feature 
commonly available in hardware.  The z-buffer is used to resolve 
visibility between the mesh triangles and the overdrawn edges.  
The number of discontinuity edges is typically much smaller than 
the number of triangles or pixels, so the overall frame time over-
head is small.  For improved quality, the discontinuity edges 
should be sorted, increasing this overhead marginally. 
The result of edge overdraw differs from traditional antialiasing 
methods like supersampling in that one side of each discontinuity 
edge is “bloated” by a fraction of a pixel.  However, the approach 
succeeds in greatly reducing crawling jaggies and improving 
rendering quality, as shown in Figure 1. 

 

 



2. Previous work 
Many general techniques to reduce aliasing have been used in 
computer graphics, including uniform supersampling [9][16], 
adaptive supersampling [32], analytic prefiltering [5][7][11][14] 
[17][29], and stochastic sampling [6].  Like our approach, adap-
tive supersampling attempts to focus computation on troublesome 
areas such as discontinuity edges.  However, adaptive supersam-
pling is difficult to make robust and implement in hardware.  
Prefiltering approaches bandlimit the continuous signal corre-
sponding to a geometric primitive (such as a constant-colored 
polygon fragment), before actually point-sampling it.  They 
require expensive visibility determinations over areas rather than 
points.  Stochastic sampling methods convert aliasing to less 
objectionable noise (rather than “jaggies”), but still require over-
sampling to acceptably reduce aliasing artifacts. 
Coverage bitmask approaches [1][4][12][23][27][28] supersample 
only coverage rather than full r,g,b,z samples.  These are effective 
at reducing artifacts at discontinuity edges but fail to eliminate 
aliasing at triangle intersections, much like our scheme.  Like 
traditional uniform supersampling, they are brute-force solutions 
since a coverage bitmask must be computed and stored at every 
pixel (typically 16-32 extra bits).  Moreover these schemes main-
tain a list of fragments projecting onto each pixel. 
OpenGL offers a “polygon antialiasing” feature, available on 
some high-end graphics workstations, that renders polygons with 
antialiased boundaries [20].  It uses a special blending mode 
(source_alpha_saturate) and only works when the polygons are 
sorted front-to-back.  A similar feature is also exposed in Micro-
soft’s DirectX API. 
Another approach is to only antialias discontinuity edges.  
Crow [7] proposes tagging discontinuity edges and antialiasing 
them using prefiltering convolution in a scanline renderer.  
Bloomenthal [3] infers discontinuity edges in an aliased image as 
a postprocess.  Pixels near discontinuities are then modified to 
account for coverage of the inferred edges.  This method gets 
confused at texture discontinuities, ignores temporal aliasing, and 
is likely too expensive to perform at interactive rates. 
In silhouette clipping [25], a coarse mesh is clipped to the exact 
silhouette of a detailed mesh using the stencil buffer.  By transfer-
ring the stencil to the alpha buffer and redrawing silhouette edges 
as antialiased lines, the external silhouette is antialiased.  The 
current paper borrows two ideas from this work: efficient runtime 
silhouette extraction and rendering of antialiased lines.  However, 
we avoid using the stencil or alpha buffers, and reduce aliasing at 
both internal and external silhouettes, and more generally all 
discontinuity edges. 
Sauer et al. [26] sketch a two-pass software rendering approach 
for antialiasing silhouette edges.  The second pass bloats fore-
ground pixels near silhouettes by computing edge coverage at 
each pixel.  Their method handles only silhouettes and detects 
these by exhaustive search.  Their paper lacks details on how 
polygons are rasterized or how the two passes are composited.  
Donovan [10] describes a hardware approach that transfers the 
aliased framebuffer contents into texture memory, and uses this 
texture to overdraw antialiased edges in a second pass. 
Wimmer [31] describes an approach similar to ours in his 
downloadable viewer (View3DX).  He tries overdrawing antiali-
ased lines, but reports that his approach fails without software 
sorting of all polygons.  The DirectX documentation also men-
tions the use of edge overdraw to achieve antialiasing [18]: 

Redrawing every edge in your scene can work without introducing 
major artifacts, but it can be computationally expensive. In addi-
tion, it can be difficult to determine which edges should be 
antialiased. The most important edges to redraw are those between 
areas of very different color (for example, silhouette edges) or 
boundaries between very different materials. Antialiasing the edge 
between two polygons of roughly the same color will have no ef-
fect, yet is still computationally expensive.  

In this paper we describe an edge overdraw approach that effec-
tively reduces aliasing by properly ordering the rendering and 
using suitable z-buffer settings.  We make the approach practical 
by efficiently detecting and rendering just the discontinuity edges, 
and introduce methods to maintain temporal smoothness, spatial 
consistency, and spatial sharpness.  We measure performance on a 
suite of models and demonstrate the resulting quality. 
Our method exploits existing hardware capable of rendering 
antialiased lines, long a subject of computer graphics research 
[2][8][13][15][19][21][33][34]. 

3. Approach 
Our approach is to first render the triangle mesh (Figure 1a) and 
then overdraw its discontinuity edges as antialiased lines (Figure 
1b-c).  In this section, we discuss issues related to rendering the 
triangle mesh, determining the discontinuity edges, shading these 
edges, and rendering them. 

3.1 Rendering the triangle mesh 
The model is rendered as a standard opaque triangle mesh.  For 
efficiency, it is specified as a display list of triangle strips.  The 
z-buffer is used to resolve occlusion, and is saved for use during 
edge overdraw. 

3.2 Determining the discontinuity edges 
Recall that the overdrawn discontinuity edges are the union of 
sharp edges (which mark shading discontinuities) and silhouette 
edges (which limit the extent of the projected surface). 
Because sharp edges demarcate shading discontinuities, this set of 
edges is static.  Therefore, they are collected during a preprocess, 
and overdrawn at every frame.  Fortunately, the number of sharp 
edges is typically a small fraction of the total number of edges. 
Silhouette edges are based on the viewpoint.  An edge is a silhou-
ette edge if one of its adjacent faces is frontfacing and the other 
backfacing.  For many meshes, the average number of silhouette 
edges per view is only ( )nO , where n is the number of mesh 
edges.  So, typically only a small fraction of mesh edges needs to 
be overdrawn as silhouette edges. 
Collecting the silhouette edges can of course be done in a brute-
force manner by checking all mesh edges in ( )nO  time.  To 
accelerate this process, we use a fast silhouette extraction algo-
rithm whose average running time is proportional to the number 
of output silhouette edges [24].  During a preprocess, the algo-
rithm constructs a search hierarchy in which nodes represent 
clusters of mesh edges.  Then, for a given viewpoint at runtime, it 
traverses the hierarchy and is able to quickly skip entire subtrees 
that contain no silhouette edges. 
For a closed object, silhouette edges that are concave (having an 
outer dihedral angle ≤ 180 degrees) are always occluded.  There-
fore, such concave edges need not be entered into the search 
structure.  This typically reduces the number of edges in the 
structure by 40%.  Furthermore, since sharp edges are always 

 



overdrawn, they too are omitted, resulting in an additional reduc-
tion of about 10%. 

3.3 Shading the discontinuity edges 
To shade each discontinuity edge, we use shading parameters 
(e.g. normals, colors, textures, texture coordinates) taken from the 
edge's neighboring faces, denoted the left and right faces.  How 
the shading parameters of the left and right face are combined 
depends on the category of the discontinuity edge. 
We first treat silhouette edges.  The case of a non-sharp silhouette 
edge is simple since the shading parameters of the two adjacent 
faces agree.  At a sharp silhouette edge, the shading parameters of 
the two faces are different, and the edge must be shaded using the 
parameters of the frontfacing adjacent face.  Note that depending 
on object orientation, a given sharp edge may appear on the 
silhouette with either the left face frontfacing, or the right face 
frontfacing. 
 

   
(a) without edge blending 

   
(b) with edge blending 

Figure 2: Unless sharp edges are blended, they can approach the 
silhouette with the wrong shading, resulting in popping as evi-
dent in (a) between the third and fourth panels as the darker top 
line disappears. 

 

Temporal smoothness: Sharp edge blending 
The troublesome case is that of a sharp edge not on the silhouette.  
To maintain temporal continuity, the edge must somehow 
smoothly transition to the shading parameters of either the left 
face or the right face as it approaches the silhouette.  Otherwise, 
abruptly switching the shading parameters from one face to the 
other would result in a “popping” artifact (see Figure 2). 
To solve this problem, for intermediate views where both adjacent 
faces are frontfacing we shade the edge as a combination of the 
two faces’ shading states.  We compute a blend parameter β based 
on the inner products of the viewing direction with the two adja-
cent face normals, via 

V = eye – edge.midpoint 
dotL = V · edge.leftFace.faceNormal 
dotR = V · edge.rightFace.faceNormal 
β = dotR / (dotL + dotR) . 

Shading is then blended using 
( 1 - β ) leftShading  +  ( β ) rightShading. 

To achieve this blending, we have explored two alternate 
schemes, blended-draw and double-draw.  We will describe both.  
Note that we prefer the second for its implementation simplicity. 
Edge blended-draw.  This scheme renders the edge once, as a 
blended combination of the two shading functions.  Ideally, the 
blending is performed with post-shaded color values.  For texture-
mapped meshes, this is achieved using hardware multitexturing to 
blend the two adjacent textures.  For Gouraud-shaded surfaces, 
current hardware does not permit blending of post-shaded results 
(without resorting to shading on the host CPU).  Future hardware 
supporting programmable shading will permit post-shaded blend-
ing.  For now, we resort to interpolating the shading attributes 
(e.g. normals and colors) prior to hardware shading.  One draw-
back is that blending of normals can cause false highlights on 
sharp crease edges. 
Edge double-draw.  This scheme renders the antialiased edge 
twice, once using the shading function of the left face, and once 
using that of the right face.  An opacity value (alpha) is specified 
for compositing each edge “over” the framebuffer.  At least one of 
the edge renderings must use alpha=1 to prevent the aliased 
background pixels from showing through.  Moreover, the back-
face shading must be attenuated to zero as the edge approaches 
the silhouette, to avoid popping.  If this backface shading edge is 
the one drawn with alpha=1, there is no way to eliminate its 
contribution by rendering the second antialiased line over it (due 
to the antialiased line’s partial coverage).  We therefore use a 
simple order-switching algorithm.  Specifically, if β < .5, we first 
render with left face shading and alpha=1, followed by right face 
shading and alpha=β.  Otherwise, we first render with right face 
shading and alpha=1, followed by left face shading with alpha=1-
β.  Although this results in a slight discontinuity at the β = 0.5 
transition, it is imperceptible in practice. 
For blending, we prefer the edge double-draw scheme because it 
does not require multitexturing and does not exhibit false high-
lights due to pre-shaded blending.  All examples in the paper use 
this double-draw scheme. 

  
(a) symmetric blending (b) asymmetric blending 

Figure 3: Simple symmetric blending blurs discontinuity edges. 

Spatial sharpness: Asymmetric blending 
Although blending is needed to avoid temporal popping, it tends 
to blur the discontinuity edge (see Figure 3), because the shading 
of the blended edge agrees with neither of the adjacent faces.  To 
compromise between the competing goals of temporal smoothness 
and spatial sharpness, we adopt a hybrid approach that uses the 
parameters from a single face (the left face) as much as possible, 
while still avoiding objectionable pops. 

We map β through the asymmetric transfer function 
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and blend using the resulting β’.  We 
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Figure 4: Orienting discontinuity edge
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3.4 Overdrawing the discontinuity edges 
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Once shading parameters are determined, edges are rendered into 
the framebuffer as antialiased lines.  Alpha blending is configured 
so that the lines are drawn using the “over” operation.  The 
z-buffer test is enabled to avoid drawing occluded edges.  The 
z-buffer write is disabled so that chains of antialiased edges do not 
have gaps at the shared endpoints between individual edges. 

Sorting  Because the “over” operation is non-commutative, we 
can occasionally get artifacts when silhouettes lie in front of other 
discontinuity paths.  As described next, we can solve this by 
sorting the edges in back-to-front order prior to rendering them. 
Of all sharp edges, only those on or near the silhouette1 can 
occlude other discontinuity edges.  Thus, only these need be 
included in the sort along with the other silhouette edges.  The 
remaining sharp edges are simply drawn first. 
We sort the edges according to the distance from the viewpoint to 
the edge midpoint.  Although this midpoint depth-sort heuristic 
occasionally gives an incorrect sort, artifacts are rare and com-
prise only a few isolated pixels.  By comparison, traditional back-
to-front polygon rendering requires correct occlusion-based 
ordering since mistakes there are much more evident. 
The sorting step incurs some cost, and is only necessary when 
there are many discontinuity edge crossings.  We therefore report 
timings both with and without sorting, and demonstrate examples 
of both on the video. 

3.5 Review of final algorithm 
Preprocess
  Collect sharp edges Sharp in scene; 
  Assign consistent orientations to Sharp; 
  Construct silhouette extraction tree (excluding sharp & concave); 
 
Runtime (given viewpoint for each frame) 
  Render scene; 
  S = ∅;      // set of discontinuity edges to sort 
  for edge e in Sharp 
      dleft = dot(e.fleft.normal , e.midpoint - viewpoint); 
      dright = dot(e.fright.normal , e.midpoint - viewpoint); 
      if dleft < 0 and dright < 0 then continue; // backfacing 
      e.β = dright / (dleft + dright); 
      if 0.1 < e.β < 0.9 then 
          Render e with α = 1.0 using e.fleft shading;  
      else 
          S = S U {e};  
  Extract silhouette edges Sil given viewpoint; 
  S = S U Sil; 
  Sort S in back-to-front order; 
  for edge e in S 
      if e ∈ Sil then 
          Render e with α = 1.0 using e.ffront shading;  
      else if e.β < 0.9 then 
          Render e with α = 1.0 using e.fleft shading; 
      else 
          e.β’ = (e.β – 0.9) / (1.0 – 0.9); 
          if e.β’ < 0.5 then 
              Render e with α = 1.0 using e.fleft shading; 
              Render e with α = e.β’ using e.fright shading; 
          else 
              Render e with α = 1.0 using e.fright shading; 
              Render e with α = 1.0 – e.β’ using e.fleft shading; 
 

                                                                 
1An edge is declared to be near the silhouette if it has β < 0.1 or β > 0.9 . 

 



4. Implementation and results 
Our software is written using OpenGL.  It has been implemented 
and tested on a Pentium III 800MHz PC with an NVIDIA Ge-
Force2 graphics card.  (We have also verified that the method 
works on an SGI Octane.) 

Implementation details.  We use glEnable(GL_POLYGON_ 
OFFSET_FILL) to perturb z-buffer values of triangles behind 
those of lines.  This is necessary so that antialiased lines pass the 
z-buffer test to cover the jaggies.  For edges adjacent to triangles 
with high depth slope, we sometimes observe remaining aliasing 
artifacts, suggesting that the glPolygonOffset() feature is not 
pushing the triangles back sufficiently.  The presence of these 
artifacts varies with the particular graphics hardware. 

For efficiency, we only enable GL_BLEND for rendering lines.  
The lines are rendered using the default glLineWidth(1.0f). 

When edge sorting is enabled, we use qsort().  A faster algo-
rithm like bucket sort could further improve the timing results 
when rendering high-resolution models. 
Results.  We tested our system on six models.  The preprocessing 
bottleneck is the creation of the silhouette tree, which is currently 
unoptimized and can take several minutes on large models.  
Collecting the sharp edges and assigning them consistent orienta-
tions takes only a few seconds. 
Runtime results are shown in Table 1.  Note that the extracted 
silhouette edges do not include silhouette edges that are sharp or 
concave.  Rendered edges excludes backfacing sharp edges.  The 
ship example has a higher performance overhead because it is 
geometry-bound and has a high number of discontinuity edges. 
 

Model man plane stoneh dino ship 
Faces 1,586 8,000 1,380 43,866 85,068
Edges 2,379 12,000 2,070 65,799 127,602
Sharp edges 354 2,085 1,250 900 19,769

Edge statistics averaged over 100 viewpoints 
Extracted sil. edges 94 393 22 365 7,122
Rendered edges 373 1,727 952 1,894 21,980
Sorted edges 309 1,212 661 1,240 16,448
Blended edges 6 23 10 23 266

Rendering time per frame (in milliseconds) 
No edge overdraw 7.2 9.8 9.6 18.9 40.1
Unsorted edge overdraw 7.7 10.3 10.7 20.0 88.4
Sorted edge overdraw 7.7 10.8 10.7 23.3 121.2

Table 1: Results. 

Figure 6 compares traditional aliased rendering, our approach, and 
2x2 supersampling.  Note that edge overdraw achieves better 
results than supersampling at edges that are nearly vertical or 
horizontal.  The difference between sorted and unsorted edge 
overdraw is slight, but is most visible in the second row.  The 
effect of sorting is more prominent in animations (rather than still 
images), where it reduces some temporal aliasing artifacts.  The 
texture-mapped cube demonstrates the behavior at boundaries 
between textures. 
Figure 7 demonstrates our technique on more complex meshes, 
using unsorted edge overdraw.  The strongest benefit of our 
approach is its ability to reduce temporal aliasing artifacts, com-
monly referred to as “crawling jaggies”.  Unfortunately this 
cannot be conveyed using static images, so please refer to the 
accompanying video. 

5. Discussion 
Surface boundaries.  Our scheme easily generalizes to the case 
of meshes with boundaries.  A boundary edge can be thought of as 
a smooth edge with an outer dihedral angle of 360 degrees.  Thus 
it is reported as a silhouette edge for all viewpoints.  Obviously, 
the edge is shaded using the attributes of its one adjacent face. 
With surface boundaries, however, the mesh interior may become 
visible, so some of our optimizations must be disabled.  Concave 
edges can no longer be omitted from the silhouette search struc-
ture, and sharp edges must be drawn even if they are backfacing. 
Bloating.  Overdrawing edges with antialiased lines extends 
triangles by a fraction of a pixel along discontinuities (Figure 5).  
At silhouette edges, this essentially enlarges the foreground object 
slightly at the expense of the background.  This is necessary since 
the framebuffer lacks information about what lies behind the 
foreground object at partially covered pixels drawn in the fore-
ground. 
For non-silhouette sharp edges, we do have simultaneous shading 
information for both adjacent faces.  Therefore, it should be 
possible to produce a reasonably antialiased result, given an 
appropriate but currently unavailable “antialiased double line” 
hardware primitive. 

 
(a) original aliased (b) 2×2 supersampled (c) edge overdrawn 

Figure 5: Comparison of antialiasing at a discontinuity edge.  
Note that hardware-antialiased edge overdraw often achieves 
smoother edge filtering than simple 2x2 supersampling. 

Bloating is most evident on small features such as thin cylinders, 
which appear wider and with darker silhouettes.  The effect can be 
reduced through level-of-detail techniques that approximate small 
geometric features using lines and points [22][24]. 
Per-object overdraw.  For a scene with many objects, edges can 
be overdrawn after all objects are rendered.  Alternatively, edge 
overdraw can be applied after the rendering of each object.  In that 
case, the objects must be rendered in back-to-front order if one 
desires correct behavior at object silhouettes. 

6. Summary and future work 
We describe edge overdraw, an effective method for reducing 
discontinuity edge artifacts for use in z-buffer hardware rendering.  
For typical models having a small proportion of discontinuity 
edges,  edge overdraw can be performed with little added cost.  
While the method is designed for spatial antialiasing, its most 
striking benefit is the reduction of “crawling jaggies” as demon-
strated on the video. 
Future work includes finding efficient methods for extracting 
silhouettes from dynamic meshes, such as view-dependent level-
of-detail representations and animated shapes.  To solve the 
“small object” aliasing problem, LOD methods that utilize line 
and point primitives [22][24] may prove useful. 

 



References [18] MICROSOFT.   DirectX SDK Documentation.  http://msdn. 
microsoft.com/library/psdk/directx/imover_0lk4.htm. 

[1] ABRAM, G., WESTOVER, L., AND WHITTED, T.  Efficient alias-
free rendering using bit-masks and look-up tables.  SIG-
GRAPH 1985, pp. 53-60. 

[19] NAIMAN, A.  Jagged edges: when is antialiasing needed?  
TOG, Oct. 1998. 

[20] NEIDER, J., DAVIS, T., AND WOO, M.  OpenGL programming 
guide.  Addison-Wesley, 1993.  

[2] BARKANS, A.  High speed high quality antialiased vector 
generation.  SIGGRAPH 1990, pp. 319-326. 

[21] PITTEWAY, M, AND WATKINSON, D.  Bresenham’s algorithm 
with grey scale.  Communications of the ACM, 23(11), No-
vember 1980. 

[3] BLOOMENTHAL, J.  Edge inference with applications to an-
tialiasing.  SIGGRAPH 1983, pp. 157-162. 

[4] CARPENTER, L.  The A-buffer, an antialiased hidden surface 
method.  SIGGRAPH 1984, pp. 103-108. [22] POPOVIC, J., AND HOPPE, H.  Progressive simplicial complexes.  

SIGGRAPH 1997, pp. 217-224. 
[5] CATMULL, E.  A hidden-surface algorithm with antialiasing.  

Computer Graphics 12(3), January 1980, pp. 23-34. [23] RIVARD, B., WINNER, S., KELLEY, M., PEASE, B., AND YEN, A.  
Hardware accelerated rendering of antialiasing using a modi-
fied a-buffer algorithm.  SIGGRAPH 1997, pp. 307-316. [6] COOK, R., PORTER, T., AND CARPENTER, L.  Distributed ray 

tracing.  SIGGRAPH 1984, pp. 137-145. 
[24] ROSSIGNAC, B., AND BORREL, P.  Multi-resolution 3D ap-

proximations for rendering complex scenes.  In Modeling in 
Computer Graphics, B. Falcidieno and T.L. Kunii, Eds.  
Springer-Verlag, 1993, pp. 455-465. 

[7] CROW, F.C.  The aliasing problem in computer generated 
images.  Communications of the ACM, v. 20, November, 
1977. 

[8] CROW, F.C.  The use of grayscale for improved raster display 
of vectors and characters.  SIGGRAPH 1980, pp. 1-5.  

[25] SANDER, P., GU, X., GORTLER, S., HOPPE, H., AND SNYDER, J.  
Silhouette clipping.  SIGGRAPH 2000, pp. 327-334. 

[9] CROW, F.C.  A comparison of antialiasing techniques.  IEEE 
Computer Graphics and Applications, v. 1, January, 1981. 

[26] SAUER, F., MASCLEF, O., ROBERT, Y., AND DELTOUR, P.  
Outcast: programming towards a design aesthetic.  1999 
Game Developers Conference, pp. 811-827.  (Also available 
at http://www.appeal.be/products/page1/Outcast_GDC/outcast 
_gdc_7.htm.) 

[10] DONOVAN, W.  Method and apparatus for performing post-
process antialiasing of polygon edges.  U.S. Patent 6,005,580, 
December 1999. 

[27] SCHILLING, A.  A new, simple, and efficient antialiasing with 
subpixel masks.  SIGGRAPH 1991, pp. 133-142. [11] FEIBUSH, E., LEVOY, M., AND COOK, R.   Synthetic texturing 

using digital filters.  SIGGRAPH 1980, pp. 294-301.  
[28] TORBORG, J., AND KAJIYA, J., Talisman: Commodity realtime 

3D graphics for the PC, SIGGRAPH 1996, pp. 353-364. [12] FIUME, E., FOURNIER, A., AND RUDOLF, L.  A parallel scan 
conversion algorithm with anti-aliasing for a general-purpose 
ultracomputer.  SIGGRAPH 1983, pp. 141-150. [29] TURKOWSKI, K.  Antialiasing through the use of coordinate 

transformations.  ACM Transactions on Graphics, 1(3), July 
1982, pp. 215-234. [13] FUCHS, H., AND BARROS, J.  Efficient generation of smooth 

line drawings on video displays.  Computer Graphics 13(2), 
August 1979, pp. 260-269. [30] WILLIAMS, L.J.  Pyramidal parametrics.  SIGGRAPH 1983, 

pp. 1-12. 
[14] GUENTER, B., AND TUMBLIN, J.  Quadrature prefiltering for 

high quality antialiasing.  ACM Transactions on Graphics, 
October 1996. 

[31] WIMMER, M.  View3DX software, 1997.  http://www.cg. 
tuwien.ac.at/~wimmer/view3dx . 

[15] GUPTA, S., AND SPROULL, R.F.  Filtering edges for gray-scale 
displays.  Computer Graphics, 15(3), August 1981, pp.1-5. 

[32] WHITTED, T.  An improved illumination model for shaded 
display.  Communications of the ACM, v.23, June, 1980. 

[16] HAEBERLI, P., AND AKELEY, K.  The accumulation buffer: 
hardware support for high-quality rendering.  SIGGRAPH 
1990, pp. 309-318. 

[33] WHITTED, T.  Antialiased line drawing using brush extension.  
SIGGRAPH 1983, pp. 151-156. 

[34] WU, X.  An efficient antialiasing technique.  SIGGRAPH 
1991, pp. 143-152. [17] MCCOOL, M.  Analytic antialiasing with prism splines.  

SIGGRAPH 1995, pp. 429-436. 

 



 
 

  

 

  

  

  
(a) original aliased mesh (b) with unsorted edge overdraw (c) with sorted edge overdraw (d) 2x2 supersampling 

Figure 6: Edge overdraw results.  Images (a-c) are rendered at 100x100 resolution, while (d) is rendered at 200x200 and averaged down. 

 
 

Discontinuity Edge Overdraw    (Pedro Sander, Hugues Hoppe, John Snyder, and Steven Gortler) 

 



 
 

(a) original aliased mesh (b) with unsorted edge overdraw 

Figure 7: Results of edge overdraw on more complex meshes, at 200x200 resolution.
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