
Geometry Images

Xianfeng Gu Steven J. Gortler Hugues Hoppe
Harvard University Harvard University Microsoft Research

Abstract

Surface geometry is often modeled with irregular triangle meshes.
The process of remeshing refers to approximating such geometry
using a mesh with (semi)-regular connectivity, which has advan-
tages for many graphics applications. However, current techniques
for remeshing arbitrary surfaces create only semi-regular meshes.
The original mesh is typically decomposed into a set of disk-like
charts, onto which the geometry is parametrized and sampled. In
this paper, we propose to remesh an arbitrary surface onto a com-
pletely regular structure we call a geometry image. It captures ge-
ometry as a simple 2D array of quantized points. Surface signals
like normals and colors are stored in similar 2D arrays using the
same implicit surface parametrization — texture coordinates are ab-
sent. To create a geometry image, we cut an arbitrary mesh along
a network of edge paths, and parametrize the resulting single chart
onto a square. Geometry images can be encoded using traditional
image compression algorithms, such as wavelet-based coders.

Keywords: remeshing, surface parametrization.

1 INTRODUCTION

Surface geometry is often modeled with irregular triangle meshes.
The process of remeshing refers to approximating such geometry
using a mesh with (semi)-regular connectivity (e.g. [3, 13]).
Resampling geometry onto a regular structure offers a number
of benefits. Compression is improved since the connectivity
of the samples is implicit. Moreover, remeshing can reduce
the non-uniformity of the geometric samples in the tangential
surface directions, thus reducing overall entropy [10]. The
regularity of sample neighborhoods helps in applying signal-
processing operations and in creating hierarchical representations
for multiresolution viewing and editing [14, 24].

However, current techniques for remeshing arbitrary surfaces
create only semi-regular meshes. The original mesh is typically
decomposed into a set of disk-like charts, onto which the geometry
is parametrized and sampled. Although the sampling on each
chart follows regular subdivision, the chart domains form an
irregular network over the surface. This irregular domain network
complicates processing, particularly for operations that require
accessing data across neighboring charts. In contrast, texture data is
typically represented in a completely regular fashion, as a (possibly
compressed) 2D array of [r, g, b] values. This distinction, among
others, causes geometry and textures to be treated and represented
quite differently by current graphics hardware.

Stanford bunny

In this paper, we propose to remesh an
arbitrary surface onto a completely regular
structure we call a geometry image. It cap-
tures geometry as a simple n × n array of
[x, y, z] values. Other surface attributes, such
as normals and colors, are stored as addi-
tional square images, sharing the same do-
main as the geometry. Because the geome-
try and attributes share the same parametriza-
tion, the parametrization itself is implicit — “texture coordinates”
are absent. Moreover, this parametrization fully utilizes the texture
domain (with no wasted space). Geometry images can be encoded
using traditional image compression algorithm, such as wavelet-
based coders. Also, geometry images are ideally suited for hard-
ware rendering. They may be transmitted to the graphics pipeline
in a compressed form just like texture images. And, they eliminate
expensive pointer-based structures such as indexed vertex lists.

Of course, arbitrary surfaces cannot generally be mapped
directly onto a square image domain, because their topology can
differ from that of a disk. The basic idea in our approach is to
slice open the mesh along an appropriate set of cut paths, to allow
the unfolding of the mesh onto a disk-like surface. The vertices
and edges along the cut paths are represented redundantly (typically
twice) along the boundary of this disk. Next, we parametrize this
cut surface onto the square domain of the image, and sample the
geometry at the 2D grid samples.

Representing surfaces as geometry images presents challenges:
• A cut must be found that opens the mesh into a topological

disk, and that also permits a good parametrization of the surface
within this disk. We describe an effective, automatic method for
cutting arbitrary 2-manifold meshes (possibly with boundaries).

• The image boundary must be parametrized such that the
reconstructed surface matches exactly along the cut, to avoid
cracks. Traditional texture mapping is more forgiving in this
respect, in that color discontinuities at boundaries are less
noticeable.

• The parametrization must evenly distribute image samples over
the surface, since undersampling would lead to geometric
blurring. We do not make a technical contribution in this
area, but simply apply the geometric-stretch parametrization
of [18, 17].

• Straightforward lossy compression of the geometry image may
introduce tears along the surface cut. We allow fusing of the cut
by encoding the cut topology as a small data sideband.

Geometry images have the following limitations:
• They cannot represent non-manifold geometry.
• Unwrapping an entire mesh as a single chart can create

parametrizations with greater distortion and less uniform sam-
pling than can be achieved with multiple local charts, particu-
larly for surfaces of high genus.

In this paper, we describe an automatic system for converting
arbitrary meshes into geometry images and associated attribute
maps (Figure 1). We demonstrate that they form a practical and
elegant representation for a variety of graphical models (Figure 7).



(a) Original mesh with cut (b) Geometry image 257×257 (c) Geometry reconstructed (d) Geometry reconstructed
70K faces; genus 0 (b∗) Compr. to 1.5KB (not shown) entirely from b entirely from b∗

(e) Geometry of d topology-fused (f) Normal-map image 512×512 (g) Geometry of c (h) Geometry of e
using sideband data (f∗) Compr. to 24KB (not shown) normal-mapped using f normal-mapped using f∗

Figure 1: Creation, compression, and rendering of a geometry image. Images b∗ and f∗ (not shown) are compressed using an image wavelet-
coder. Geometry image is 12-bit [x, y, z] visualized as [r, g, b]. Normal-map image is 8-bit [nx, ny, nz] visualized as [r, g, b].

2 PREVIOUS WORK

There exist several schemes for semi-regular remeshing of arbitrary
surfaces. Eck et al. [3] achieve remeshing by cutting a mesh
into multiple charts using a Voronoi-like decomposition. Each
chart is parametrized using a harmonic map, sampled using a
regular triangular subdivision pattern, and compressed using a
triangular wavelet construction [14]. Khodakovsky et al. [10]
use the MAPS scheme [13] to partition the mesh into charts
and create the chart parametrizations. They obtain impressive
compression results using zero-tree coding of local-frame wavelet
coefficients. Lee et al. [12] create a multi-chart domain using mesh
simplification. They define a subdivision surface over this domain
and fit it to the original surface. The fit residual is expressed as a
semi-regular scalar displacement map over the smooth subdivision
surface. Guskov el al. [7] use a MAPS-like approach to create
multiple charts. These charts are recursively subdivided, and newly
introduced vertices are expressed using displacements from the
previous mesh, mostly as scalar displacements.

In our setting, previous semi-regular remeshing approaches can
be viewed as representing a surface as a collection of abutting
geometry images. The crux of our contribution is to represent the
entire surface as a single geometry image, by cutting the surface
and sampling it using a completely regular quad grid. We optimize
the creation of the cut to allow for a good parametrization.

3 CREATION OF GEOMETRY IMAGES

From a 2-manifold triangle mesh M, we create a geometry image
consisting of an n × n array of [x, y, z] data values. If we plan to
render using normal mapping, we also create another 2D array of
normal values [nx, ny, nz]. (See Figure 1.)

Our approach is to cut the mesh M to form a new mesh M′ that
has the topology of a disk (Figure 2). The cut ρ is specified as a set
of edges in M. To create M′, we split each non-boundary edge in ρ

into two boundary edges to form the opened cut ρ′. This directed
loop of edges ρ′ is the boundary of M′. We say that two edges in ρ′

are mates if they result from the splitting of an edge in ρ.

A vertex v with valence k in ρ is replicated as k vertices in ρ′.
Vertices in ρ that have valence k �= 2 in the cut are called cut-nodes.
(We still refer to these as cut-nodes when replicated in ρ′.) A cut-
path is the set of boundary edges and vertices between two ordered
cut-nodes in the loop ρ′. Each cut-path has a mate defined by the
mates of its edges (unless its edges were boundary edges in ρ).

Let D be the domain unit square for the geometry image. The
parametrization φ is a piecewise linear map from the unit square
D to M′, defined by associating domain coordinates (s, t) with each
mesh vertex in M′. The domain D has a rectilinear n×n grid, where
grid points have coordinates (i/(n−1), j/(n−1)) with i, j = 0. . n−1.
We evaluate φ at the grid points to sample the mesh geometry, as
well as any other surface attributes (e.g. color, skinning weights,
radiance transfer coefficients).

The geometry image samples are used to reconstruct an approxi-
mation of M. In this work, we use linear basis functions (triangles)
to define the reconstruction interpolant for geometry. Our goal is to
find a good cut ρ and parametrization φ, such that this reconstruc-
tion is a good approximation of M for moderate sampling rates.

Approach overview Our strategy for finding a good cut ρ and
parametrization φ is as follows. We first find a topologically
sufficient cut, and create an initial parametrization using this cut.
We use information from the parametrization to improve the cut,
and reparametrize based on the new cut. This process of cutting
and reparametrizing is iterated until the parametrization no longer
improves. To aid in the exposition, we first describe how a
parametrization is found given any cut ρ (Section 3.1). We then
describe how the space of cuts is explored (Section 3.2).



3.1 Parametrization
For now, assume that we are given a cut ρ. To create a
parametrization, we first fix a mapping between the opened cut ρ′

and the boundary of the unit square D. Next, we solve for a map
of M′ onto D that is consistent with these boundary conditions. We
now describe these two steps in more detail.

Boundary parametrization In order to avoid cracks in the
reconstructed geometry, it is necessary that each cut-node in ρ′ be
exactly sampled in the remesh. This implies that we must map cut-
nodes to grid points on the boundary of D. (Other vertices in ρ′ are
not constrained to lie on grid points.) In addition, cut-path mates
must be sampled at identical surface points to avoid cracks, which
requires that cut-path mates be allocated the same length on the
boundary of D. To accomplish this, we allocate for each cut-path
an amount of the boundary proportional to its length in ρ′. This
allocation is then rounded to an integer multiple of 1/(n−1). If
due to rounding we have over- or under-allocated the boundary, we
redistribute the residual to the various cut-paths in units of 1/(n−1),
making sure to treat cut-path mates identically. Note that an n×n
geometry image can represent a surface with genus at most n.

To avoid degeneracies, we must enforce two more constraints.
First, no triangle in M′ can have all its three vertices mapped to one
of the four sides of the square, for it would become parametrically
degenerate. If such a triangle arises, we split the triangle by
introducing new vertices at the midpoints of its non-boundary
edge(s), and split neighboring triangles so as to avoid T-junctions.

Second, as we lay out ρ′ along the boundary of D we must break
any edge that spans one of the four corners of D. Otherwise a single
boundary edge in M′ would map to an “L” shape in D. The edge is
broken by introducing a vertex at the domain corner, thus splitting
its adjacent triangle into two. To enforce topological consistency
across the cut, the same procedure is applied to its mate edge.

Finally, we find that placing a valence-1 cut-node at a corner of
D results in poor geometric behavior, so if this occurs we rotate the
boundary parametrization.

Interior parametrization Having fixed the boundary of the
parametrization, we now solve for its interior. When creating a
parametrization, there are numerous metrics that can be used to
measure its quality, e.g. [3, 6, 8, 13, 16]. For our application,
an ideal metric would be some measure of surface accuracy after
sampling and reconstruction. As shown by the analysis in [17],
the L2 geometric-stretch metric introduced in [18] is in fact an
approximation of this ideal measure.

Geometric stretch measures the amount of spacing that occurs
on the surface when the parameter domain is uniformly sampled.
Thus, minimizing geometric stretch tends to uniformly distribute
samples on the surface. In [17], the stretch metric is shown to
be related to signal-approximation error (SAE) — the difference
between a signal defined on the surface and its reconstruction
from a discrete grid sampling. Specifically, the stretch metric
corresponds to the first-order Taylor expansion of SAE under the
assumption of locally constant reconstruction. In our context, the
signal is the geometry itself, and therefore geometric stretch can be
seen as a predictor of geometric reconstruction error. In Section 5,
we show the advantage of using a geometric-stretch parametrization
over the Floater “shape-preserving” parametrization.

We compute a geometric-stretch parametrization using the
hierarchical optimization algorithm described in [17]. First,
the interior of M′ is simplified to form a progressive mesh
representation [9]. The few interior vertices in the resulting base
mesh are optimized within D by brute-force. Then, we apply
vertex splits from the progressive mesh to successively refine the
mesh. For each inserted vertex, we optimize the parametrization
of its neighborhood to minimize stretch using a local, non-linear
optimization algorithm.

3.2 Cutting
We now describe how we automatically find a good cut ρ for M.
Starting with a surface of arbitrary genus, we first find an initial cut
that opens M into a disk. Given the resulting topological disk, we
use a novel algorithm to augment the cut in order to improve the
subsequent parametrization and reconstruction quality.

Initial cut It is well known that any closed surface can be opened
into a topological disk (called a polygonal schema) by cutting along
an appropriate set of edges [15]. Such a cut was used in [5] as
part of a geometric modeling system for creating smooth surfaces.
Piponi and Borshukov [16] describe an interactive system allowing
a user to manually cut a genus-zero manifold into a single chart
using a tree of edge cuts.

The computational complexity of optimally cutting a mesh of
arbitrary genus into a disk is studied in [4]. Algorithms for finding
special kinds of cuts (those that form reduced and canonically
reduced polygonal schemata) are described in [2, 11, 21].

Our algorithm, which is most similar to that of [2], works as
follows. If the mesh has boundaries, let B be the set of original
boundary edges. This set remains frozen throughout the algorithm,
and is always a subset of the final cut ρ. After removing a single
seed triangle from the mesh, we apply two phases.

In the first phase we repeatedly identify an edge e �∈ B adjacent
to exactly one triangle, and remove both the edge and the triangle.
Note that the two remaining edges of the triangle are left in the
simplicial complex, even if they are dangling. In order to obtain a
result of “minimal radius”, we order triangle removals according to
their geodesic distance from the seed triangle. When this first phase
terminates, we have removed a topological disk that includes all of
the faces of the mesh. Thus, the remaining vertices (which is in
fact all of them), and the remaining edges must form a topological
cut ρ of M. At this point, ρ consists of a set of connected loops
along with some unnecessary trees of edges (and is similar to the
construction of [20]).

In a second phase, we repeatedly identify a vertex adjacent to
exactly one edge (i.e. a dangling edge), and remove both the vertex
and the edge. This second phase terminates when all the edge trees
have been trimmed away, leaving just the connected loops. Since
the resulting cut ρ may be serrated (it is not made up of shortest
paths), we straighten each cut-path in ρ by computing a constrained
shortest path that connects its two adjacent cut-nodes and stays
within a neighborhood of the original cut-path.

For the case of a closed mesh of genus 0, the resulting ρ will
consist of a single vertex, since it has no loops. Because our
parametrization requires that we map ρ′ onto a square, we add back
to ρ two adjacent mesh edges.

Iterated cut augmentation Through experiment, we have found
that to obtain efficient geometry images, it is important for ρ to
pass through the various “extrema” of M. For example, in the hand
model a good cut should pass through its five fingers (see Figure 2).
Therefore our goal is to find these extrema and augment the cut so
that it passes through them. A similar subproblem is investigated by
Sheffer [19], who classifies extrema as vertices with high (discrete)
curvature. Unfortunately, this type of local method will not be able
to find protrusions with widely distributed curvature.

Our approach to finding extrema is to search for mesh re-
gions that behave poorly (have large geometric stretch) under a
parametrization using the current cut. Specifically, we map the ver-
tices of ρ′ to the unit circle C, spaced according to their edge lengths
over the surface. (We use the unit circle at this point instead of the
unit square in order to avoid boundary constraints.) The cut mesh
M′ is parametrized into the interior of C using the shape-preserving
parametrization of Floater [6]. Given the resulting map we identify
the triangle with maximum geometric stretch, and pick one of its
vertices as an extremal vertex.



· · ·

· · ·

(a) (b) (c) (d) (e)
Figure 2: Columns (a–d) show iterations of the cut improvement algorithm. Upper images show the mesh M with the current cut ρ (blue
except red where occluded). Bottom images show the Floater parametrization (over circle) of the corresponding M′, together with the shortest
path to an extremal point, which will be added to ρ. Column (e) shows the final cut ρ and the geometric-stretch parametrization (over square).

The intuition for this method is that any protrusion of the mesh
experiences high geometric stretch under a Floater parametrization.
For instance, it can be shown that when parametrizing a tube closed
at its top and open at its base, a triangle at a height h from the base
has geometric stretch exponential in h, reaching a maximum at the
tube apex. It is important to use the Floater parametrization for
protrusion detection, since the geometric-stretch parametrization
would evenly distribute stretch, thus hiding the extrema.

Having identified an extremal point, we find the shortest path
from it to the current boundary of M′ (measuring distance on the
mesh), and add this path to ρ. This maintains the invariant that ρ is
a valid cut of M.

We repeatedly apply this augmentation process, as shown in
Figure 2. To determine when to stop, we run our geometric-stretch
parametrization algorithm (Section 3.1) after each cut, and stop if
the geometric stretch increases.

As a further improvement in the case of genus-zero meshes,
when we find the first extremal point, we discard the original cut,
which was based on an arbitrary random seed point, and replace the
cut with a pair of adjacent edges at this extremum.

Cutting summary This pseudocode summarizes our algorithm:

function Cut and parametrize(mesh M)
Remove seed triangle.
while there remains an edge e adjacent to only one triangle t

Remove e and t.
while there remains a vertex v adjacent to only one edge e

Remove v and e.
Cut ρ := remaining edges and vertices.
if only a single vertex remains in ρ then

Add back two adjacent edges to ρ.
Straighten each cut-path in ρ.

Param φ := geometric-stretch parametrization using ρ.
repeat

f := Floater parametrization using ρ.
t := triangle with maximal stretch under f .
s := shortest path on M from t to ρ.
ρ′ := ρ + s.
φ′ := geometric-stretch parametrization using ρ′.
if stretch(φ′) > stretch(φ) break.
ρ := ρ′; φ := φ′.

Report cut ρ and parametrization φ.

3.3 Topological sideband
A geometry image is a parametric sampling of the topological
disk M′. Its reconstruction looks like M because its boundary
vertices coincide geometrically. For some applications though, it
is important to be able to “fuse” the boundary of D so that it has the
original topology of ρ. This fusing could be achieved by searching
for geometric correspondences on the image boundary, but this
process might be error-prone, particularly if the geometry image
undergoes lossy compression.

Since the necessary topological cut information is extremely
compact, we record it into a sideband signal as follows. We
associate a pair of labels e.g. {a, a} to each cut-path and its mate.
We then store the string of labels corresponding to the sequence
of cut-paths on the boundary of M′, e.g. ababcc. From this string,
we can recover the topology of the cut, i.e. the valence k of each
cut-node in ρ and the ordering of the cut-nodes along ρ′. We also
store for each cut-path a its discretized length on the boundary of
domain D, and we store the starting boundary location of the first
cut-path. From this topological and parametric information, we can
later establish the correspondence of all boundary grid vertices.

The size of this sideband information is O(q log n) bits, where
q is the number of cut-paths and n is the sampling rate over D.
For our models, q ranges between 3 and 10, and the sideband is
approximately 12 bytes long.

4 APPLICATIONS

Rendering To render geometry images on current hardware, we
span each 2×2 quad of grid points using two triangles, by splitting
along the shorter of the two diagonals.

Level-of-detail rendering is implemented by mip-mapping the
geometry image, as shown in Figure 3. In order to avoid cracks
at multiple levels of details, we use geometry images of size
(2j + 1)× (2j + 1), and minify using simple sub-sampling. Also,
the boundary mapping φ of Section 3.1 is constructed to place cut-
nodes to grid-points of the lowest intended resolution (65×65 for
all of our examples). Unlike [16], our boundary samples coincide
exactly across the cut so we need no special boundary treatment,
even for mip-mapping.

For hardware that implements normal mapping, we also create
a normal map using the exact same parametrization φ. Usually,
we sample the normals into an image of higher resolution than the



Original mesh (342K faces) Geometry image (257×257) Mip-mapped (129×129) Mip-mapped (65×65)

Figure 3: Mip-mapping a geometry image. As in all examples, the boundary parametrization is constructed for a 65×65 domain grid.

geometry since the normal-map signal tends to be more detailed.
During rendering, the normal-map signal is rasterized over the tri-
angles by hardware texture-mapping, using bilinear reconstruction
of each quad in the normal map. (Texture coordinates at the vertices
are assigned the range [(0. 5)/n′, . . . , (n′−0. 5)/n′] where n′ is the
texture resolution, for correspondence with the texture samples.)

Because geometry images have the same regular structure as
texture images, one can envision hardware that would use bilinear
(or even bicubic) basis functions to reconstruct the geometry.
Moreover, the rendering process should be inherently simpler
than with traditional texture mapping. The attribute samples can
be accessed in scan order rather than backward-mapped through
random-access texture coordinates. Also, the attribute samples have
a regular correspondence with the geometry samples, and therefore
do not require general tri-linear interpolation lookup.

Both view-frustum and backface culling could be implemented
in a unified setting by constructing hierarchies on the geometry
image and the normal image respectively.

Compression and Decompression For compression we use the
image-compression coder provided by Davis [1]. For decompres-
sion, we decode the wavelet coefficients to recreate an n×n grid of
[x, y, z] values. Our wavelet decoder produces floating-point coor-
dinate values as output. Quantizing these values to 12-bit integers
provides sufficient resolution for our models.

Since this wavelet coding is lossy, cut-path mates may be recon-
structed differently, leading to cracks in the mesh (see Figure 1d).
To address this problem, we also record and losslessly compress the
topological sideband (Section 3.3). During decompression, we use
this topological information to geometrically fuse the cut. We first
determine the equivalence classes of boundary grid points. Most
boundary grid point are paired up with a single other grid point,
while grid points that sample a cut-node are grouped with k− 1
other grid points, where k is the valence of the cut-node in ρ. We
average together the [x, y, z] values of equivalent grid points, and
replace their data with this common average. We record the vector
displacement added due to this averaging for later error diffusion.

This simple averaging scheme gives rise to a continuous surface,
but can lead to unsightly steps in the reconstructed geometry near
the cut. In order to smooth these steps, we apply a simple error dif-
fusion technique, spreading the displacements towards the center of
the square. The result of this fusing process is shown in Figure 1e.

5 RESULTS
We have run our system on a number of high-resolution models,
with and without boundaries. Uncompressed examples are shown
in Figure 7. These required about an hour to convert offline. The
conversion bottleneck is the sequence of parametrizations in the
iterated cut augmentation process. Currently, we set the geometry
image resolution n manually (most often n = 257), but this
parameter could be set automatically to achieve a desired accuracy.

40

45

50

55

60

65

70

75

80

85

90

100 1000 10000 100000 1000000 10000000

File Size (bytes)

P
S

N
R

Khodakovsky

513 geometric-stretch

257 geometric-stretch

513 Floater

Figure 4: Rate distortion for geometric reconstruction from com-
pressed geometry images of the bunny (at 257×257 and 513×513
resolutions, and using a Floater-parametrization), compared to [10].

Figure 5: Example artifacts in the Buddha geometry image: aliasing
(jaggedness) near sharp features, and regions of high anisotropy.

Geometry images tend to be relatively smooth, and therefore pro-
vide opportunity for compression. Even simple image compressors
will define basis functions that span the whole surface, and there-
fore allow high compression ratios. Figure 4 shows rate-distortion
curves when using the image wavelet-coder of [1]. These curves
measure the reconstruction accuracy for various compression rates
applied to the geometry image. Error is measured as Peak Signal
to Noise Ratio PSNR = 20 log10(peak/d), where peak is the bound-
ing box diagonal and d is the symmetric rms Hausdorff error (ge-
ometric distance) between the original mesh and the reconstructed
geometry. The blue curves show results for wavelet-compressed
geometry image created using a geometric-stretch parametrization
and two different sampling rates. The green curve corresponds to
a geometry image formed using the same cut, but with a Floater
parametrization, and is noticeably less efficient. For comparison,
the red curve is the result of the compression scheme described
in [10], which is more efficient by about 3dB. Reconstructions from
compressed geometry images are shown in Figure 6.



(a) 49 KB (b) 12 KB (c) 3 KB (d) 49 KB

Figure 6: (a–c) Surfaces reconstructed from a 257×257 geometry image under increasing levels of wavelet compression. (d) Reconstructed
from a 257×257 Floater-parametrized geometry image. All models are flat-shaded.

6 SUMMARY AND DISCUSSION

We have introduced geometry images, a completely regular repre-
sentation for approximating the geometry of an irregular mesh. Ge-
ometry images can be easily rendered and compressed using current
hardware and software. Due to their simplicity, we envision that ge-
ometry images may inspire new hardware rendering approaches.

We have found that we can create efficient geometry images on
a wide variety of models. However, models of high genus can be
problematic. Such models may require long cuts to open up all the
topological handles. In that case, much of the surface lies near the
cut boundary, making it difficult to create a parametrization without
significant geometric stretch and poor resampling. Figure 5 shows
examples of trouble areas in the remeshing of the Buddha model.
Our genus-6 Buddha model was obtained by filtering out tiny
topological handles from a genus-104 scanned model [23]; working
directly on the genus-104 surface would have been impossible.

In general, remeshing techniques can have difficulty capturing
sharp surface features accurately at low sampling rates. In semi-
regular remeshing, one technique to improve accuracy is to make
the chart boundaries correspond with the most significant features,
so that the subdivided domain edges follow these features [13].
Another technique is feature-sensitive remeshing [22], which warps
the parametrization as a post-process to align the remesh edges
with the sharp surface features. When creating our geometry
images, adding a pass of feature-sensitive remeshing could improve
reconstruction results for meshes with sharp geometry.

Since we used off-the-shelf compression code, we did not
explore the extra savings that could be obtained using local-frame
detail representation [10]. Adding this to our system may improve
compression efficiencies.

ACKNOWLEDGEMENTS

We gratefully thank Zoë Wood for providing the topologically sim-
plified dragon and Buddha, Pedro Sander for the parametrization
code, and Stanford University and Cyberware for models.

REFERENCES
[1] DAVIS, G. Wavelet Image Compression Construction Kit.

http://www.geoffdavis.net/dartmouth/wavelet/wavelet.html.

[2] DEY, T. K., AND SCHIPPER, H. A new technique to compute
polygonal schema for 2-manifolds with application to null-homotopy
detection. Discrete and Computational Geometry 14 (1995), 93–110.

[3] ECK, M., DEROSE, T., DUCHAMP, T., HOPPE, H., LOUNSBERY,
M., AND STUETZLE, W. Multiresolution Analysis of Arbitrary
Meshes. In SIGGRAPH 95, pp. 173–182.

[4] ERICKSON, J., AND HAR-PELED, S. Cutting a surface into a disk.
ACM SoCG 2002.

[5] FERGUSON, H., ROCKWOOD, A., AND COX, J. Topological design
of sculptured surfaces. In SIGGRAPH 92, pp. 149–156.

[6] FLOATER, M. Parametrization and smooth approximation of surface
triangulations. CAGD 14, 3 (1997), 231–250.

[7] GUSKOV, I., VIDIMCE, K., SWELDENS, W., AND SCHRÖDER, P.
Normal Meshes. In SIGGRAPH 2000, pp. 95–102.

[8] HAKER, S., ANGENENT, S., TANNENBAUM, A., KIKINIS, R.,
SAPIRO, G., AND HALLE, M. Conformal Surface Parameterization
for Texture Mapping. IEEE TVCG 6, 2 (2000), 181–189.

[9] HOPPE, H. Progressive Meshes. In SIGGRAPH 96, pp. 99–108.

[10] KHODAKOVSKY, A., SCHRÖDER, P., AND SWELDENS, W. Progres-
sive Geometry Compression. In SIGGRAPH 2000, pp. 271–278.

[11] LAZARUS, F., POCCHIOLA, M., VEGTER, G., AND VERROUST,
A. Computing a Canonical Polygonal Schema of an Orientable
Triangulated Surface. In ACM SoCG 2001, pp. 80–89.

[12] LEE, A., MORETON, H., AND HOPPE, H. Displaced Subdivision
Surfaces. In SIGGRAPH 2000, pp. 85–94.

[13] LEE, A., SWELDENS, W., SCHRÖDER, P., COWSAR, L., AND

DOBKIN, D. MAPS: Multiresolution Adaptive Parameterization of
Surfaces. In SIGGRAPH 98, pp. 95–104.

[14] LOUNSBERY, M., DEROSE, T., AND WARREN, J. Multiresolution
Analysis for Surfaces of Arbitrary Topological Type. ACM TOG 16,
1 (January 1997), 34–73.

[15] MUNKRES, J. Topology. Prentice Hall, 2000.

[16] PIPONI, D., AND BORSHUKOV, G. D. Seamless Texture Mapping
of Subdivision Surfaces by Model Pelting and Texture Blending. In
SIGGRAPH 2000, pp. 471–478.

[17] SANDER, P., GORTLER, S., SNYDER, J., AND HOPPE, H. Signal-
Specialized Parametrization. Microsoft Research MSR-TR-2002-27
(January 2002).

[18] SANDER, P., SNYDER, J., GORTLER, S., AND HOPPE, H. Texture
Mapping Progressive Meshes. In SIGGRAPH 2001, pp. 409–416.

[19] SHEFFER, A. Spanning Tree Seams for Reducing Parameterization
Distortion of Triangulated Surfaces. Shape Modelling International
(2002).

[20] TAUBIN, G., AND ROSSIGNAC, J. Geometric compression through
topological surgery. ACM TOG 17, 2 (1998), 84–115.

[21] VEGTER, G., AND YAP, C. K. Computational complexity of
combinatorial surfaces. In ACM SoCG 1990, pp. 102–111.

[22] VORSATZ, J., RÖSSL, C., KOBBELT, L., AND SEIDEL, H.-P.
Feature Sensitive Remeshing. Computer Graphics Forum 20, 3
(2001), 393–401.

[23] WOOD, Z., HOPPE, H., DESBRUN, M., AND SCHRÖDER, P.
Isosurface topology simplification. Microsoft Research MSR-TR-
2002-28 (January 2002).

[24] ZORIN, D., SCHRÖDER, P., AND SWELDENS, W. Interactive
multiresolution mesh editing. In SIGGRAPH 97, pp. 259–268.



Original (500K faces; genus 1) Original (500K faces; genus 6) Original (47K faces; genus 3) Original (480K faces; genus 0)

Geometry image (257x257) Geometry image (257x257) Geometry image (129x129) Geometry image (257x257)

Reconstruction (PSNR=66.8) Reconstruction (PSNR=64.9) Reconstruction (PSNR=75.2) Reconstruction (PSNR=78.6)

Normal map (512x512) Normal map (512x512) Normal map (256x256) Normal map (512x512)

Normal-mapped reconstruction Normal-mapped reconstruction Normal-mapped reconstruction Normal-mapped reconstruction
Figure 7: Examples: original meshes with cut, geometry images and their reconstructions, and use of normal-mapping.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


